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Abstract—Recent development of techniques that improve the 

convergence properties of power flow simulation have been 
demonstrated to facilitate scaling to large system sizes (80k+ 
buses). However, the problem remains to reliably identify cases 
that are infeasible – system configurations that have no solution. 
In this paper, we use the circuit theoretic approach based on 
adjoint networks to evaluate the feasibility of a power flow test 
case and further locate and quantify the source of infeasibility in 
the cases operating beyond the tip of the nose curve. By creating 
infeasibility current source models that are added to each node of 
the system model and further coupling each source to its 
corresponding node of the adjoint network, any locations of 
insufficient real or reactive power are captured by a non-zero 
response of the adjoint network. Furthermore, it is shown that the 
proposed joint simulation of power flow and its adjoint network 
models provide the optimally minimized currents that can be later 
utilized to inform corrective actions to restore the feasibility of 
power flow problems.  

Index Terms— adjoint powerflow, circuit formalism, 
equivalent circuit programming, feasibility analysis, split-circuit. 

I.  INTRODUCTION 
lternating Current Power Flow (AC-PF) is a nonlinear 
problem that determines the steady-state operating point 

of the power system at a fixed frequency, and as such it 
represents a fundamental component in everyday operation and 
planning of electrical power systems. Despite the lack of 
convergence robustness [1], ‘PQV’ based AC-PF remains the 
industry standard for the transmission level power grid steady-
state analyses. In contrast to the actual power system, where the 
grid frequency changes slightly with a demand change, and 
control systems adjust the generated power to maintain a 
frequency close to the nominal one [2], the corresponding 
power flow problem generally incorporates one or more slack 
bus generators to provide the additional power that is needed. 
Even when the real and reactive powers supplied by the slack 
bus are unbounded, it is still possible that no feasible solution 
exists due to the nonlinearities in the formulation and network 
topology constraints that are observed when the power network 
requires operation beyond the tip of the nose curve, i.e. the point 
of power flow Jacobian matrix singularity. 

In general network theory, detailed understanding of the true 
physical characteristics of a network model has facilitated 
powerful mathematical proofs and solution methods for 
decades. For instance, Tellegen’s theorem for complex network 
systems is based on conservation of energy and is derived and 
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proven from Kirchhoff’s Current and Voltage Laws [3], while 
the circuit simulator SPICE [3] and its many derivatives can 
presently solve circuit problems that contain billions of nodes. 
In [4]-[8] we have demonstrated that the circuit-theoretic 
framework utilized within state-of-the-art circuit simulators can 
be applied to power grid analyses, specifically power flow and 
three-phase power flow problems. It was shown that the 
equivalent circuit representation of a power flow problem 
provides a new perspective and intuition for understanding 
domain specific knowledge that can be utilized to adapt and 
apply methods and algorithms from the circuit simulation field 
[9]-[10] to improve convergence properties of large power 
networks [6]-[8]. Furthermore, the recently introduced 
Equivalent Circuit Programming (ECP) framework [11] shows 
that embedding of domain-specific circuit simulation 
techniques within the line-search optimization algorithms 
additionally ensures the optimal Newton Raphson (NR) 
residual decrement, and thus improves simulation efficiency. 
However, since divergence cannot be avoided when the power 
system problem is infeasible, as shown in Fig. 1, it is difficult 
to distinguish systems that have diverged due to “lack of 
simulation robustness” from those that are “truly infeasible.”  

 
Fig. 1. Convergence profile (NR residual vs iteration count) of an infeasible 

11 bus power flow test case operating at 100% loading factor. This paper will 
demonstrate that the case has a feasible solution at 99.82% loading factor as 
well as indicate the amount of power deficiency at 100% loading factor that 

caused the infeasibility of the test case. 

There have been attempts to develop algorithms to detect 
power flow infeasibility. In [12], the authors discussed the 
conditions that define the upper bound on the number of 
feasible power flow solutions based on the network topology, 
while [13] introduces a predictor-corrector technique to explore 
the feasible solution space of power flow. Various homotopy 
methods such as the Continuation Power Flow method (CPF) 
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[14] have been proposed to solve the sequence of power flow 
problems. In [15] the two sufficient conditions for which the 
power flow problem does not have a solution are defined based 
on semidefinite relaxation of power flow and reactive power 
limits and further used as a feasibility metric. 

One approach that attempted to identify and correct the 
power flow infeasibility was presented in [16], where the author 
formulated the power flow problem in terms of a least squares 
minimization to quantify the grid infeasibility. The approach is 
described as finding a solvable boundary and the best direction 
to shed the loads for restoring the feasibility, but was shown to 
suffer from divergence [17] and lead to non-physical local 
solutions [18].  

Another approach to detect the infeasible power flow case is 
to use a provably convergent algorithm such the one introduced 
in [19]. As an alternative method for iteratively solving the 
power flow problem, the noniterative “Holomorphic 
Embedding Load-Flow Method” (HELM) is purported to find 
a correct power flow solution if one exists. However, the 
approach as presently described handles only PQ buses, and has 
issues with accurately modeling PV buses [20]. Furthermore, 
the presented algorithms do not seem to scale well to large 
power flow systems [20]. Therefore, the goal remains to create 
a generalized and scalable framework that not only detects 
infeasibility but localizes nodes/elements in the system that 
cause it. 

In this paper we demonstrate how the adjoint network of a 
power system can be used for locating and evaluating power 
flow infeasibility. To that end, a significant contribution of this 
paper is the development of adjoint networks for the power flow 
model based on adjoint circuit theory [21]-[22] that are 
presented in Section III. It is shown that the power flow 
violations that arise for an infeasible system as a consequence 
of over-constraining the governing network equations can be 
optimally captured by the adjoint power flow network. 
Specifically, this is done by coupling every bus within the 
system to its respective bus in the adjoint network. Therefore, 
power flow violations can be identified by jointly solving the 
original power flow problem coupled with its adjoint network. 
Most importantly, the formulation described herein eliminates 
the uncertainty that arises today when a power flow simulation 
does not converge, considering that the solution to the jointly 
solved power flow and its adjoint network model always exists, 
and divergence would therefore indicate a “lack of simulation 
robustness.” As such, it also provides an additional proof of 
robustness for the recently introduced circuit simulation 
techniques [4]-[8], considering that the source of simulation 
divergence can be exactly localized and quantified.  

Interestingly, as shown in Section IV., the governing 
equations defining the system and its adjoint network in terms 
of current and voltage state variables exactly represent the 
necessary optimality conditions of the optimization problem 
that minimizes the L2-norm of the additional current sources 
connected to each bus of the power flow network 
representation. Moreover, the simulation framework 
comprised of jointly solving a power flow and adjoint network 
was recently demonstrated to represent a generic framework 
that can include any power flow optimization objective as 
shown in  [11],[23]-[24]. 

Lastly, it is worth noting that the introduced circuit theoretic 
formulation for evaluating feasibility within a power flow 
simulation can also be solved with any of the generic state-of-
the-art nonlinear equation/optimization toolboxes. However, 
since the generalized nonlinear toolboxes are known not to 
scale well with problem size, in this paper we apply domain-
specific information obtained from the adjoint circuit 
perspective to the optimization problem to robustly solve it by 
extending the recently introduced circuit simulation-based 
power flow methods described in [6]-[8]. It is shown that 
utilizing specific variable constraints and applying a unique 
form of homotopy, both of which are inspired by and derived 
from circuit models, enables a robust evaluation of feasibility 
for large system sizes, as well as provides simulation runtime 
improvements of up to 200x. Several results are presented in 
Section VII to validate the proposed approach and demonstrate 
its practical utility for identifying and locating infeasibility.  

II.  POWER FLOW CURRENT/VOLTAGE FORMULATION 
Modeling the power flow problem in terms of current and 
voltage (I-V) state variables that can be represented by an 
equivalent split-circuit for the Newton-Raphson (NR) 
linearized equations was demonstrated to provide a generalized 
framework for robust and efficient power grid steady-state 
analyses [4]-[7]. In this section, we briefly review the split-
circuit formulation concept by deriving equivalent circuit 
models for some of the prominent power flow models. More 
details and derivations of other power-flow split-circuit models 
can be found in [4]-[5], [25]-[26]. It is important to emphasize 
that a complete linearized split-circuit power flow model 
represents nothing more than the physical representation of the 
linearized set of NR equations that is iteratively solved until 
convergence, as in any other nonlinear equation solver. The key 
difference, however, is the domain specific knowledge that can 
now be obtained and used for NR-step control, and as such 
ensures stable and efficient convergence properties. 

A.  Transmission Line p-model 

Consider a series element of a transmission line p model 
connecting buses 𝑘 and 𝑚. Its complex governing equation can 
be obtained from Ohm’s Law in terms of the series line 
admittance (𝐺$ + 𝑗𝐵$) and the voltage across it (𝑉)*+) as: 

𝐼-*+ = (𝐺$ + 𝑗𝐵$)𝑉)*+ (1) 

We further split the complex current from (1) into its real and 
imaginary components (𝐼*+1  and 𝐼*+2 ) as: 

𝐼*+1 = 𝐺$𝑉*+1 − 𝐵$𝑉*+2  (2) 
𝐼*+2 = 𝐺$𝑉*+2 + 𝐵$𝑉*+1  (3) 

To represent the line p model as an equivalent split-circuit, the 
terms from (2)-(3), where the real and imaginary currents are 
proportional to the respective real and imaginary voltages 
across them (𝑉*+1  and 𝑉*+2 ), define a conductance (𝐺$), while 
the current terms proportional to the  voltage across the other 
circuit represent voltage-controlled current sources. After 
applying the same approach to map the shunt parts of p model 
into its split-circuit equivalent [4], the complete transmission 
line power flow split-circuit can be obtained as shown in Fig. 2. 
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Fig. 2. Power flow split-circuit of a transmission line p-model. 

B.  Modeling nonlinear constant power models 

The constant power-based PV and PQ circuit models are 
obtained from the definition of complex power in terms of the 
current injection that absorbs the real (𝑃5) and reactive (𝑄5) 
powers at a bus voltage (𝑉)5 = 𝑉15 + 𝑗𝑉25) given as: 

𝐼-5 =
𝑃5 − 𝑗𝑄5

𝑉)5∗
 (4) 

where a subscript 𝐶 = {𝐺, 𝐿} represents a placeholder denoting 
the current injection model corresponding to generation (𝐺) or 
load (𝐿).  

To allow the application of NR, we split the nonanalytic 
complex current (𝐼-5) from (4) to its real and imaginary 
components (𝐼15 and 𝐼25): 

𝐼15 =
𝑃5𝑉15 + 𝑄5𝑉25
𝑉15= + 𝑉25=

	 (5) 

	𝐼25 =
𝑃5𝑉25 − 𝑄5𝑉15
𝑉15= + 𝑉25=

 (6) 

Since the PQ load constrains both real and reactive powers, 
its equivalent split-circuit model [4] is defined in terms of real 
and imaginary load currents (𝐼1$ and 𝐼2$) linearized by the first 
order Taylor expansion for (𝑘 + 1)@A iteration: 

𝐼1$*BC = 𝛼1* +
𝜕𝐼1$*

𝜕𝑉1$
𝑉1$*BC +

𝜕𝐼1$*

𝜕𝑉2$
𝑉2$*BC (7) 

𝐼2$*BC = 𝛼2* +
𝜕𝐼2$*

𝜕𝑉1$
𝑉1$*BC +

𝜕𝐼2$*

𝜕𝑉2$
𝑉2$*BC (8) 

The current sensitivities from (7) and (8) that relate real and 
imaginary currents to the voltage across them (𝑉1$*BC,	𝑉2$*BC) 
represent a conductance, while the sensitivities that are 
proportional to the voltage of other circuit are mapped to 
voltage controlled current sources. Lastly, the constant legacy 
terms known from the previous NR iteration (𝛼1* and 𝛼2*) are 
mapped to independent current sources, as shown in Fig. 3. 

 
Fig. 3. Linearized power flow split-circuit of a PQ load. 

 In contrast to the slack bus generator whose powers are not 
bounded, the PV generator has a pre-set real power (𝑃F), and 
further adjusts its reactive power (𝑄F) to control the bus voltage 

magnitude (|𝑉H|) [4]. It should be noted that the reactive power 
𝑄F represents an added state variable, hence an additional 
constraint that relates real and imaginary voltages across the 
generator (𝑉1F,	𝑉2F) has to be added:  

𝐹F ≡ 𝑉1F= + 𝑉2F= − |𝑉H|= = 0 (9) 

Therefore, in addition to the voltage sensitivities, the current 
sensitivities with respect to reactive power are added in the 
linearized split-circuit model [4]. Furthermore, the 
nonlinearities from (9) are linearized by the first order Taylor 
expansion and stamped (values are added to the Jacobian in a 
modular way) to the system of circuit equations for additional 
𝑄F variable within the formulation. 

C.  Modeling Voltage Regulation (VR) 
An important industry requirement represents consideration 

of reactive power operational limits of VR devices. Namely, a 
generator or other VR device can control the voltage to a 
prespecified set point only until one of the reactive power limits 
is approached. This is often referred to as PV/PQ switching, and 
can be defined mathematically as a disjunctive function 𝐹F1: 

𝐹F1 ≡ L
𝑄M2N < 𝑄F < 𝑄MPQ 	∧ 	𝑉1F= + 𝑉2F= = |𝑉S|=

𝑄F = 𝑄MPQ 	∧ 	𝑉1F= + 𝑉2F= < |𝑉S|=

𝑄F = 𝑄M2N 	∧ 	𝑉1F= + 𝑉2F= > |𝑉S|=
U (10) 

that represents a discontinuous function characterizing the 
response of the VR device shown in Fig. 4. 

 
Fig. 4. Disjunctive characteristics of a voltage regulating device. Note that if 
generated reactive power 𝑄F is not approaching operational limits (point 2) 

the voltage can be maintained at a set point, while whenever one of the limits 
is reached (point 1), the voltage control cannot be maintained. 

The equivalent circuit formulation can include two distinct 
approaches for handling the disjunctive nonlinearities 
introduced by the characteristics of VR devices: 

• Outer control-loop (PV/PQ conversion)  
Outer control-loop approach [27] represents one of the most 

commonly used approaches to handle the nondifferentiable 
disjunctive behavior of VR devices implemented in most 
commercial power flow tools, and as such can be used in 
circuit-theoretic power flow simulators [28]. Its 
implementation is briefly described by the two following steps: 

i) Solve power flow with basic PV models and unbounded 
reactive power 𝑄F 

ii) Project the unbounded solution back to the respective 
segments of the disjunctive function from (10) using  
predefined heuristics (usually based on the respective bus 
voltage sensitivities [27]), and keep re-solving the power 
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flow in the outer loop until all of the devices fall on the 
respective segment of the VR characteristic.  

From the perspective of numerical methods, this outer-loop 
approach represents a fixed-point iteration loop around the 
power flow NR solver, which can converge linearly but is also 
known to have serious drawbacks, such as oscillations and 
divergence. A more detailed discussion on this approach and its 
drawbacks can be found in [27]-[28]. 

• Implicit continuous VR modeling 
Recent advances include continuous models that characterize 

the disjunctive VR behavior in terms of a steep sigmoid [28] or 
complementarity functions [11] and as such can be implicitly 
included within the NR power flow solver by replacing the 𝐹F 
from (9). Moreover, inspired by the steep nonlinearities that can 
be found in integrated circuit simulations, the circuit simulation 
heuristics developed solely for handling the steep VR 
nonlinearities [11] demonstrated extremely promising results 
[28] in terms of stability and efficiency over existing state-of-
the-art. 

Finally, independently of the method used to incorporate the 
realistic operational bounds on VR devices, the additional 
constraints only increase the likelihood of power flow problem 
infeasibility due to possible reactive power deficiencies in the 
system. A framework that can efficiently identify and quantify 
these deficiencies is therefore important. 

III.  ADJOINT POWER FLOW NETWORK MODELS 
The adjoint network concept introduced in [21]-[22] is a 

well-studied and understood concept that has been used for 
various circuit analyses, most notably noise analysis in SPICE 
[9]. It is derived from Tellegen’s Theorem [3]. In the first part 
of this section, we provide a brief introduction to the adjoint 
network concept and apply it to the linear network elements of 
the power flow problem defined in terms of current and voltage 
state variables. Notably, an adjoint circuit methodology does 
not exist at present for nonlinear steady-state elements defined 
at fixed frequency (models that constrain the complex power), 
hence we further extend the adjoint network theory to derive the 
adjoint network models of nonlinear elements within the power 
flow (I-V) formulation. 

A.  Adjoint equivalent of linear power flow network elements 
Consider a linear time-invariant network 𝒩 and its 

topologically equivalent adjoint 𝒩W , where 𝑰),	𝑽W, 𝕿W  and 𝝀)  
represent the network and adjoint branch current and voltage 
phasors respectively. From Tellegen’s Theorem we can write 
the following relationship that has to be satisfied [3],[21]-[22]: 

𝝀)\𝐼- − 𝕿W\𝑽W = 0 (11) 
Next, if the circuit equations of network	𝒩 have a form of: 

𝑰) = 𝑌𝑽W (12) 

By substituting (12) in (11) we can obtain: 

𝝀)\𝑌𝑽W − 𝕿W\𝑽W = 0 (13) 
Hence in order for Tellegen’s Theorem to remain satisfied, the 
adjoint current 𝕿W  that further defines the transformation from 
network 𝒩 to its adjoint 𝒩W  has to be equivalent to: 

𝕿W = 𝑌\𝝀)  (14) 

As it can be seen from (14), the linear sensitivity (admittance) 
matrix of the adjoint circuit corresponds to the Hermitian of the 
original admittance matrix. Furthermore, since independent 
voltage and current sources are constant, their sensitivities are 
zero and, therefore, represent an open and short, respectively, 
in the adjoint domain [21]. For instance, an independent voltage 
source that models the slack bus generator [25] is further 
represented by a zero-voltage source in the adjoint network. In 
the following, the generalized mapping of linear circuit 
elements that represent the building blocks of linear power flow 
models (transmission line, shunt, slack bus, transformer, etc.) 
are presented in Table 1. More detailed derivation of adjoint 
network models can be found in [11]. 

TABLE 1: MAPPING THE LINEAR ELEMENTS TO ADJOINT DOMAIN 
Powerflow network  Adjoint network 

Independent current source → open 
Independent voltage source → short 

Capacitor → Inductor 
Inductor → Capacitor 

Conductance → Conductance 

For the given series admittance and shunt susceptance of a 
transmission line model, we obtain its adjoint power flow 
equations by using the relation defined in (14). The complex 
governing equation for the series part is given by Ohm’s Law 
that relates the complex adjoint circuit current (𝔗W*+ = 𝔗*+1 +
𝑗𝔗*+2 )	and voltage (𝜆-*+ = 𝜆*+1 + 𝑗𝜆*+2 )	as:  

𝔗W*+ = (𝐺$ − 𝑗𝐵$)𝜆-*+ (15) 
The corresponding real and imaginary adjoint currents of series 
elements are further obtained by splitting (15): 

𝔗*+1 = 𝐺$𝜆*+1 + 𝐵$𝜆*+2  (16) 
𝔗*+2 = 𝐺$𝜆*+2 − 𝐵$𝜆*+1  (17) 

As in the case of mapping the power flow circuit, the terms 
where the adjoint current is proportional to the adjoint voltage 
drop across the line are modeled by conductance, while the 
other terms proportional to the voltage drop of the other adjoint 
circuit represent voltage-controlled current sources. Similarly, 
the complex current flowing through the shunt is given by (18) 
and once combined with the series elements from (16)-(17) 
correspond to the circuit in Fig. 5: 

𝔗*,HA1 + 𝑗𝔗*,HA2 =
𝐵HA
2 𝜆*2 − 𝑗

𝐵HA
2 𝜆*1  (18) 

   
Fig. 5. Adjoint power flow split-circuit of a transmission line p-model. 

B.  Adjoint equivalent of nonlinear power flow models 
Power flow analysis with the traditional constant power 

macromodels (e.g., PQ load, PV generator) can be classified as 
a nonlinear AC steady-state analysis for a fixed frequency 
point. This is not well explored in the circuit simulation field 
due to the lack of models that exhibit such behavior in 
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integrated circuits. Namely, existing circuit theory recognizes 
two types of AC steady-state response modeling and analyses. 
The first, linear AC analysis, can be fully characterized by an 
RLC network whose response remains of the same harmonic 
frequency as its excitation and only changes in magnitude and 
phase. The second, nonlinear AC analysis [37], recognizes 
models that introduce distortion to the network response and 
hence its output is not of the same harmonic frequency as the 
network excitation. Power flow analysis can be seen as an 
introduction of the nonlinearities in constraining the powers of 
a linear AC network response. Therefore, in order to derive the 
adjoint split-circuit models of nonlinear power flow elements 
(PV generator, PQ load), we generalize the linear adjoint circuit 
methodology discussed in III.A. 

Consider the split-circuit equations that govern the nonlinear 
power flow elements, expressed at the solution in terms of their 
first order sensitivities 𝒥(𝑽) (small signal model [10]):  

𝑰N$(𝑽) = 𝒥(𝑽)	𝑽 + 𝜶 (19) 
where 𝑰N$,	𝑽 and 𝜶 represent the nonlinear split-circuit currents 
(𝑰1, 𝑰2), state variables, and independent sources, respectively. 

Since the independent sources 𝜶 do not contribute to the 
adjoint circuit, they can be omitted in further derivations 
without loss of generality. Next, we substitute (19) into the 
generalized relationship obtained from Tellegen’s Theorem in 
(11) to obtain the expression for the nonlinear adjoint current 
that further defines the transformation from power flow to the 
adjoint network: 

𝕿N$ = 𝒥(𝑽)d𝝀 (20) 
Note that if the sensitivity matrix 𝒥(𝑽)d is linear, (20) becomes 
equivalent to the split-circuit form of (14). Otherwise, the 
nonlinear elements from power flow also introduce 
nonlinearities within the adjoint power flow circuit. The more 
detailed derivation of generalized adjoint network models can 
be found in [11]. 
    1)  Adjoint model of a PQ load 

We start the derivation of the adjoint split-circuit of a PQ load 
by rewriting the power flow split-circuit governing equations 
from  (7)-(8) in the form given in (19). 

e𝐼1$𝐼2$
f =

⎣
⎢
⎢
⎡
𝜕𝐼1$
𝜕𝑉1$

𝜕𝐼1$
𝜕𝑉2$

𝜕𝐼2$
𝜕𝑉1$

𝜕𝐼2$
𝜕𝑉2$⎦

⎥
⎥
⎤
e𝑉1$𝑉2$

f + m
𝛼1$
𝛼2$ n (21) 

The nonlinear adjoint circuit equations that define the PQ load 
can be further obtained from (20) as: 

e𝔗1$𝔗2$
f =

⎣
⎢
⎢
⎡
𝜕𝐼1$
𝜕𝑉1$

𝜕𝐼2$
𝜕𝑉1$

𝜕𝐼1$
𝜕𝑉2$

𝜕𝐼2$
𝜕𝑉2$ ⎦

⎥
⎥
⎤
e𝜆1$𝜆2$

f (22) 

Further, since the current sensitivities from (22) represent 
nonlinear functions of real and imaginary power flow voltages, 
we further linearize the nonlinear adjoint load currents using the 
first order Taylor expansion. We map the equations to an 
equivalent circuit, where the current terms that are proportional 
to the adjoint voltage across the load terminals represent 
conductances, and the terms related to the voltages in the 
opposite sub-circuit define controlled-current sources. 

Historical terms known from the previous iteration are given by 
independent current sources. 
    2)  Adjoint model of a PV generator 

The governing power flow split-circuit equations of a PV 
generator can be expressed in the form defined by (19) as: 

o
𝐼1F
𝐼2F
0
p =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐼1F
𝜕𝑉1F

𝜕𝐼1F
𝜕𝑉2F

𝜕𝐼1F
𝜕𝑄F

𝜕𝐼2F
𝜕𝑉1F

𝜕𝐼2F
𝜕𝑉2F

𝜕𝐼2F
𝜕𝑄F

𝜕𝐹F
𝜕𝑉1F

𝜕𝐹F
𝜕𝑉2F

𝜕𝐹F
𝜕𝑄F ⎦

⎥
⎥
⎥
⎥
⎥
⎤

o
𝑉1F
𝑉2F
𝑄F
p + o

𝛼1F
𝛼2F
𝑓F
p (23) 

The nonlinear adjoint circuit of a PV generator is then obtained 
by applying the transformation from (20): 

o
𝔗1F
𝔗2F
0
p =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐼1F
𝜕𝑉1F

𝜕𝐼2F
𝜕𝑉1F

𝜕𝐹F
𝜕𝑉1F

𝜕𝐼1F
𝜕𝑉2F

𝜕𝐼2F
𝜕𝑉2F

𝜕𝐹F
𝜕𝑉2F

𝜕𝐼1F
𝜕𝑄F

𝜕𝐼2F
𝜕𝑄F

𝜕𝐹F
𝜕𝑄F ⎦

⎥
⎥
⎥
⎥
⎥
⎤

o
𝜆1F
𝜆2F
𝜆r
p (24) 

As in the case of the nonlinear adjoint PQ load, the first two 
equations from (24) represent the nonlinear real and imaginary 
adjoint generator currents. These can be linearized by a first 
order Taylor expansion to define the adjoint split-circuit. The 
third equation represents the adjoint equivalent of the voltage 
magnitude constraint and can be simplified for the basic 
(without VR control incorporated) PV model as: 

𝑉2F𝜆1F − 𝑉1F𝜆2F = 0 (25) 
It can be shown that the relationship between power flow and 
adjoint bus voltages from (25) constrains the PV bus voltage 
angle of the adjoint circuit to be equal to the respective voltage 
angle of the power flow circuit. Equation (25) is then linearized 
and stamped for the 𝜆r adjoint variable as in the case of the 
voltage magnitude constraint. 

Finally, with VR control characteristics included, adjoint 
model of a PV generator remains as given by (24), with the key 
differences found in the sensitivities of the 𝐹F equation. 
Namely, in the ‘outer loop’ approach the adjoint network is 
included within the loop and the 𝐹F sensitivities correspond to 
the current segment of the disjunctive function, while in the 
implicit VR model they simply represent the sensitivities of the 
continuous model governing equation. 

IV.   LOCATING AND EVALUATING POWER FLOW 
INFEASIBILITY WITH ADJOINT NETWORK 

With the relationship between the power flow and adjoint 
networks established, in this section we demonstrate the use of 
adjoint network theory to represent first-order optimality 
conditions for the grid optimization problems. Specifically, we 
will show how the adjoint network is used to solve for and 
localize power flow infeasibilities. To do so, we couple the 
power flow network with its corresponding adjoint network 
through the use of feasibility current sources (𝑰𝑭) and show that 
if a power flow solution does exist, the adjoint network 
converges to a solution that has zero voltage at all nodes. 
However, when the system is infeasible, the feasibility current 
sources will optimally “pick up the slack” and prevent KCL 
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violations at the corresponding nodes by using it to set an 
operating point of the adjoint circuit. The non-zero voltages in 
the adjoint network now indicate the nodes that contribute most 
toward the infeasibility in the grid. The feasibility current 
sources are added to each node in the power flow circuit are 
shown in Fig. 6, whereas the adjoint circuit for the 
corresponding sources are derived per the methodology in 
Section III.  

 
Fig. 6. Infeasibility current sources added to the power flow circuit. 

 Next, we demonstrate how the solution of the coupled power 
flow and adjoint networks with feasibility current sources 
corresponds to the solution of the optimization problem of 
minimizing the L2-norm of these current sources subject to the 
power flow network constraints. 
 First, consider the generalized form of equations that 
represent the power flow and its adjoint networks coupled 
through the feasibility currents, namely (12), (19)-(20): 

t
𝑌Fu + 𝒥(𝑽*) −𝟏w
𝜕𝕿𝑵𝑳(𝑽*, 𝝀*)

𝜕𝑽 𝑌Fud + 𝒥d(𝑽*)
z m𝑽𝝀n = −m

𝜶
𝜷n (26) 

where 𝑌Fu represents the linear admittance matrix from (12), 
defined for the split-circuit models and 𝟏w is a degenerate 
identity matrix with zero diagonal entries corresponding to the 
indices of voltage magnitude constraints. 

Next, in order to show how the set of circuit equations from 
(26), relates to the necessary optimality conditions of an 
optimization problem, we define the following program: 

min
𝑰𝑭
	
1
2
‖𝑰𝑭‖== (27) 

subject to power flow constraints with additional feasibility 
currents: 

𝑌Fu𝑽 + 𝑰N$(𝑽) = 𝑰𝑭 (28) 

To find the optimality conditions of the optimization problem 
defined by (27)-(28), we define the Lagrangian function as: 

ℒ(𝑽, 𝑰𝑭, 𝝀) =
1
2
‖𝑰𝑭‖= + 𝝀d(𝑌Fu𝑽 + 𝑰N$(𝑽) − 𝑰𝑭) (29) 

The necessary KKT optimality conditions are further obtained 
by differentiating (29) with respect to power flow and adjoint 
variables, as well as newly introduced current (𝑰𝑭) variables: 

𝜕ℒ
𝜕𝑽 →

[𝑌Fud + 𝒥d(𝑽)]𝝀 = 0 (30) 
𝜕ℒ
𝜕𝐼�

→ 𝑰𝑭 = 𝝀 (31) 

𝜕ℒ
𝜕𝝀 →

[𝑌Fu + 𝒥(𝑽)]𝑽 − 𝑰𝑭 + 𝜶 = 𝟎 (32) 

After linearizing (30) and eliminating the (𝑰𝑭) variables by 
substituting (31) in (32), we end up with the system of equations 
from (26). From this we postulate the following theorem. 

 

Theorem 1. Let 𝒩 and its topologically equivalent adjoint 𝒩W  
represent the power flow and adjoint networks respectively that 
are further coupled through infeasibility current sources 
connected to every node of the power flow network 𝒩. An 
operating point of such jointly coupled system model then 
corresponds to a power flow solution that can further capture 
its infeasibilities. Moreover, if the sufficient optimality 
condition (33) is met, an operating point also provides with a 
minimal current flow between the power flow circuit and its 
adjoint; i.e. the infeasibility currents are minimized. 
Proof. Following from (26) and (30)-(32), the governing 
equations of the proposed problem represent the necessary 
KKT optimality conditions of the optimization problem given 
by (27)-(28). Hence, any network operating point of the jointly 
coupled power flow and its adjoint network models represents 
an optimal solution candidate to (27)-(28) and as such locates 
the possible problem infeasibilities.  
i) Importantly, if an obtained operating point indicates the 

trivial adjoint network response (zero adjoint voltages), the 
power flow problem is feasible and a network operating 
point also represents an optimal solution to (27)-(28). 

ii) If, however, the adjoint network response is not trivial, an 
obtained operating point indicates the power flow 
infeasibilities. Therefore, due to the constant power-based 
models that introduce the nonlinearities within the 
formulation, a network operating point represents an 
optimal solution if the second order optimality sufficient 
condition [29] holds: 
𝝉d∇𝒙𝒙= ℒ(𝑽∗, 𝝀∗)𝝉 > 0							∀(𝝉 ≠ 𝟎) ∈ 𝑇r∗  (33) 

where 𝑽∗ is an obtained network operating point and 
𝑇r∗represents a null space of the power flow network sensitivity 
matrix, i.e.	Null�𝑌Fu + 𝒥(𝑽∗) − 𝟏w�.  
Lastly, if a case of any of the two scenarios (ii) or (iii), the 
network operating point obtained from a jointly solved power 
flow and its adjoint network, in addition to locating the source 
of infeasibility for the simulation model, optimally allocates 
(minimizes) the respective current violations. ∎ 

From the perspective of the optimization problem, the 
infeasibility current sources do not have to be added to the 
voltage magnitude constraints given by (8), since by Ohm’s 
Law and KCL there is always a current that can be injected into 
a node of the power flow circuit that prevents the system 
solution from being infeasible. This further eliminates the need 
for multi-objective optimization and additional weighting 
factors that have to be assigned in order to obtain a physically 
meaningful optimal solution, as required by other proposed 
approaches to determine the power flow infeasibility [16]. 

V.  BUILDING AND SOLVING AN EQUIVALENT SPLIT-CIRCUIT 

A.  Generalized power system problem 
A current-voltage power flow formulation represented by an 

equivalent split-circuit was demonstrated to provide a 
generalized power system simulation framework [4]-[7], [30]-
[31]. As it is shown in the previous sections, each of the power 
system device models (PV generator, PQ load, etc.) can be 
further defined within the adjoint (dual) domain. The complete 

Real circuit Imag. circuit

!" !#
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split-circuit representation is then obtained by hierarchically 
combining (connecting) the derived power flow and adjoint 
power flow circuit models, as defined by the grid (network) 
topology. Importantly, the hierarchical building of the circuit 
representation corresponds to a modular construction of the 
Jacobian/Hessian matrix and constant vector that defines the 
Newton-Raphson (NR) values during the iteration process.  

Coupling the power flow with its adjoint circuit corresponds 
to solving an optimization problem whose objective is specified 
by the type of coupling between the two circuits. This further 
defines a new class of optimization problems, Equivalent 
Circuit Programming (ECP), whose constraints can be 
expressed in terms of equivalent circuit equations, and whose 
solutions can therefore be obtained by solving circuit 
simulation problems. Adding the adjoint sources to the power 
flow circuit to capture infeasibility can be done in the beginning 
of the simulation, where simulating the circuit corresponds to 
solving an optimization problem, or during the power flow 
simulation, when the iterative simulation method starts 
diverging, thereby indicating possible infeasibility.  

B.  Generalized solution of an equivalent split-circuit   
Once the complete equivalent split-circuit is built, its set of 

governing circuit equations correspond to the linearized set of 
equations that are updated at each step of NR. In equivalent 
circuit approach to NR, only circuit elements (Jacobian/Hessian 
terms) that are dependent on the values from the previous 
iteration are recomputed, while the linear parts are only 
computed once at the beginning of the simulation. This 
approach was shown to represent an extremely efficient 
formulation and solution method for solving the nonlinear 
circuit problems [3],[10]. The main difference between the 
circuit simulation and traditional NR method, however, is the 
circuit formalism obtained from the circuit representation of the 
problem. This provides important information that allows for 
developing efficient heuristics for limiting the Newton step, 
thereby ensuring robust and efficient convergence properties 
[4]-[7],[10] as is the case in the circuit simulation field. 
Embedding the physical characteristics of the problem in the 
NR-step control methods obtained from the circuit perspective 
of the power flow problem is discussed in Section VI.  

Initialization of the power flow split-circuit is well defined 
by the power flow problem as it is specified in [4]-[7]. When 
initializing the adjoint power flow circuit, we need to consider 
that the adjoint voltages correspond to the magnitude of the 
respective infeasibility currents in the power flow analysis. 
Hence, we initialize them to a small constant value, such as the 
NR tolerance used for the convergence criterion. After the 
circuit initialization and first iteration, the linearized circuit 
elements are updated as discussed in the following section. 

VI.  EXTENDING THE CIRCUIT SIMULATION METHODS 
The circuit formalism was demonstrated to provide 

understanding of the characteristics of each power flow state 
variable and its sensitivities directly from first principles. As it 
was shown in [5]-[7], during the solution process of a power 
flow problem, a large NR step may lead the solution trajectory 
out of a well-defined solution space and result in either 
divergence or convergence to a non-physical solution. It is, 
therefore, crucial to limit the NR step before it makes an invalid 

step out of the solution space. Furthermore, limiting methods 
may fail to converge for large-scale ill-conditioned test cases 
solved from an arbitrary initial guess. Hence, the use of 
homotopy methods, such as “Tx-stepping” in [6], and other 
developed homotopy methods [8] can be crucial to ensure 
convergence. Importantly, the nonlinearities of the adjoint split-
circuit resemble the ones that are robustly handled within the 
power flow problem, while the feasibility of the simulation 
problem is ensured. Thus, in this section we extend the circuit 
simulation limiting and homotopy methods to ensure robust 
convergence of any size power systems. 

A.  Voltage limiting  
Voltage Limiting was shown to be a simple and effective 

simulation technique that limits the absolute value of the step 
change that the real and imaginary voltage vectors are allowed 
to make during each NR iteration [4]-[7]. The power flow 
voltage step limiting technique is given in compact form as: 

𝜉u5,� = min �1, sign�Δ𝛣5,�* �
Δ𝛣+��	
Δ𝛣5,�*

� , ∀𝑖 ∈ �1, �Δ𝛣5*�� (34) 

where placeholders 𝐶 ∈ {𝑅, 𝐼} and 𝛣 ∈ {𝑉, 𝜆} in Δ𝛣5,�*  represent 
the power flow and adjoint voltage NR steps, while Δ𝛣+�� is a 
maximum allowable step change. 

 Furthermore, the hard limits can be imposed to prevent the 
voltage variables to escape the physical solution space as shown 
in [23]. Lastly, the obtained limiting factors are used to limit the 
step change of power flow and adjoint power flow voltages as: 

𝑽w5*BC = 𝑽5* + 𝝃𝑽𝑪 ⊙ Δ𝑽5*  (35) 
𝝀¤5*BC = 𝝀5* + 𝝃𝝀𝑪 ⊙ Δ𝝀5*  (36) 

B.  Tx-Stepping homotopy method 
To achieve robust convergence of large-scale power system 

simulation problem, we extend the recently introduced Tx-
stepping method [6] to the simulation discussed in this paper. 

The solution of the feasibility simulation problem (coupled 
power flow and adjoint power flow circuits), is obtained by 
embedding the homotopy factor 𝜇 ∈ [0,1] to linear series 
network elements and transformer model as shown in (37)-(39) 
and sequentially solving the relaxed feasibility problems while 
gradually decreasing the homotopy factor to zero. Namely, for 
the initial homotopy factor set to one, the circuit of the 
feasibility problem is virtually “shorted”. Now, the power flow 
solution is feasible and driven by the generator voltages and the 
slack bus angle and can be trivially obtained. Gradual 
decreasing of the embedded homotopy factor 𝜇 to zero 
sequentially relaxes the feasibility circuit toward its original 
state, while using the solution from the previous sub-problem 
to initialize the circuit for the next homotopy decrement:  

𝐺*+ + 𝑗𝐵*+ → (𝜇Υ + 1)(𝐺*+ + 𝑗𝐵*+) (37) 
𝑡(𝜇) → 𝑡 + (1 − 𝑡)𝜇 (38) 
𝜃©A(𝜇) → (1 − 𝜇)𝜃©A (39) 

where Υ represents an admittance scaling factor, 𝑡 is the 
transformer tap, and 𝜃©A is the phase shifting angle. 

Most importantly, any homotopy-embedded model defined 
for the adjoint circuit has to be governed by transformations 
given in (14) and (20). Therefore, transformer and phase shifter 
parameters remain scaled by (38)-(39) within their respective 
adjoint models, while the homotopy admittance are conjugated. 
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VII.  SIMULATING AND LOCATING POWER FLOW 
INFEASIBILITY 

The circuit element library for the introduced adjoint power 
flow models was built and incorporated within our prototype 
simulator Simulation with Unified Grid Analyses and 
Renewables (SUGAR). Since most standard commercial power 
grid simulation tools do not locate and quantify the power flow 
infeasibilities, in order to validate the proposed approach, we 
first examine that our solution exactly matches a standard 
power flow solution for a feasible case. Therefore, we tested 
our approach using three different categories of test cases 
available in the literature: 1. Benchmark ill-conditioned test 
cases (case11 and case145) [32]-[33], 2. European RTE and 
PEGASE test cases [34], 3. Synthetic USA test cases [35]. 
Each of the test cases is run on a machine with an Intel Core i7-
6700 3.4GHz processor, and it is confirmed that the same 
solution is obtained between the proposed approach and the 
traditional power flow approach. 

Notably, the addition of the adjoint power flow split-circuit 
increases the size of the simulation problem. Therefore, to study 
the effect on the simulation complexity, in Fig. 7 we compare 
the average runtime per iteration obtained from the simulation 
of  a variety of test cases for regular power flow in SUGAR, 
regular power flow in a commercial tool, and 
adjoint/feasibility-based power flow in SUGAR. As expected, 
there is an increase in average time per iteration with respect to 
the power flow run in SUGAR without the adjoint (feasibility) 
option enabled. However, the increase in runtime is justified as 
regular power flow solvers would not converge for an infeasible 
test case, leaving the user to determine where the infeasibility 
stems from. With adjoint power flow in SUGAR, the location 
and amount of infeasibility is automatically computed. Most 
importantly, the simulation runtime is not significantly affected, 
which makes the proposed formulation a promising tool for 
future implementations in contingency simulations. 

Lastly, we examine the power flow convergence 
characteristics and demonstrate how embedding domain-
specific knowledge within a set of simulation algorithms used 
to control the NR-step can improve efficiency and robustness. 
A comparison of iteration count between SUGAR and the four 
following formulations 
i. Power mismatch in polar coordinates (Polar PQV) 

ii. Power mismatch in rectangular coordinates (Rect. PQV) 
iii. Current Injection in polar coordinates (Polar I-V) 
iv. Current Injection in rectangular coordinates (Rect. I-V) 

within the MATPOWER [33] simulator is provided in Table II. 

 
Fig. 7. Average runtime per iteration comparison 

Table 2. Iteration count comparison between the existing state-of-art 
power flow formulations and SUGAR 

Formulation Polar PQV Rect. PQV Polar I-V Rect. I-V SUGAR*  
case Flat Input  Flat Input  Flat Input  Flat Input  Flat Input  

1354pegase 5 4 6 4 ∞ 4 ∞ 4 4 1 
1888rte ∞ 2 ∞ 2 ∞ 2 ∞ 2 5 1 
1951rte ∞ 3 ∞ 3 ∞ 3 ∞ 3 5 1 
2383wp 5 6 5 ∞ 6 5 6 5 3 2 
2736sp 6 4 ∞ 4 ∞ 4 ∞ 4 3 2 
2746wp 6 5 ∞ 5 ∞ 4 ∞ 4 3 1 
2848rte 10 3 ∞ 3 ∞ 3 ∞ 3 2 1 

2869pegase 5 7 8 6 ∞ 4 ∞ 4 4 1 
3012wp ∞ 3 ∞ 3 ∞ 3 ∞ 3 3 1 
3120sp 6 6 ∞ ∞ 8 8 ∞ ∞ 3 2 
3375wp ∞ 2 ∞ 2 ∞ 2 14 2 4 1 
6468rte ∞ 3 ∞ 3 ∞ 3 ∞ 3 3 1 
6515rte ∞ 3 ∞ 3 ∞ 3 ∞ 3 5 1 

9241pegase 7 6 ∞ 6 ∞ 4 ∞ 4 4 1 
ACTIVSg10k ∞ 5 ∞ 5 ∞ 5 ∞ 5 5 2 
13659pegase ∞ 6 ∞ 6 ∞ 5 ∞ 5 5 2 
ACTIVSg25k 6 5 ∞ 5 ∞ 4 ∞ 4 5 1 
ACTIVSg70k ∞ 6 ∞ 8 ∞ 5 ∞ 5 7 2 
∞-indicates the divergence of the simulation 
* Iteration counts within SUGAR were identical for both Power Flow and Feasibility analysis 

In referring to the formulations solved within MATPOWER 
only, the initial starting point played a significant role in the 
convergence process. As can be seen, most of the cases 
converged when initialized with a good starting point that 
usually represents an operating point close to the actual 
solution. Moreover, the lack of robustness when a good initial 
guess is not provided is particularly emphasized as the sizes of 
the cases increase. By further comparing the examined 
formulations solved without utilizing any of the domain 
specific knowledge, the overall performance of Polar PQV 
formulation with provably [38] positive definite Jacobian 
matrix is slightly better in reference to the other three 
formulations. The positive definite Jacobian, however, does not 
guarantee the convergence, and therefore, it can be seen that 
there are some cases that converge with other formulations 
while not converging with a Polar PQV 

Utilizing the physical characteristics of the problem and 
further embedding the domain knowledge within the set of 
algorithms used to control the NR step, as done in SPICE, 
resulted in a significant improvement over the traditionally 
implemented formulations solved within the MATPOWER 
simulator. This is particularly evident when a good initial start 
is not provided. Most importantly, the iteration count profile of 
the examined test cases does not change with the introduction 
of the adjoint network. 

Next, we apply the proposed power flow feasibility 
framework to examine and locate infeasibilities that may arise 
due to the operation at the edge of voltage collapse or a 
contingency. 

1. Synthetic USA grid during a loading factor change 

Particularly in large-scale simulations of the extreme 
planning power flow cases, the initial power flow starting point 
may not be sufficiently close to the actual operating point, 
which can result in simulation divergence [7]. More 
importantly, if the power flow case diverges, it is generally not 
known whether the divergence is caused by a lack of simulation 
robustness or true problem infeasibility. Therefore, to 
demonstrate the robustness of the circuit simulation methods, 
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we consider the 80k-bus synthetic USA test case [35] and 
perform power flow simulations for three different loading 
factors in SUGAR and a commercial simulator initialized from 
the solution in the input file.  

TABLE 3: SYNTHETIC USA CONVERGENCE PROFILE COMPARISON 

Simulator Loading Factor 
0.8 1 1.1 

Commercial tool Diverge Converge Diverge 
SUGAR (feasibility OFF) Converge (Feasible) Converge Diverge 
SUGAR (feasibility ON) Converge (Feasible) Converge Converge (Infeasible) 

As it can be seen from Table 2, both the commercial tool and 
SUGAR converge for the base loading factor. The commercial 
tool fails to converge once the loading factor is changed and 
indicates to the user that the system has experienced blackout 
conditions. However, the power flow case is truly infeasible 
only for the increased loading factor, while the feasible solution 
for the decreased loading factors exists and can be obtained 
within SUGAR. Lastly, the divergence of SUGAR without the 
feasibility option corresponds to true infeasibility that can be 
computed only once the feasibility option is enabled. 

2. Existing state-of-art optimization algorithms 
The first step in demonstrating the efficiency of the SUGAR 

framework in solving the power flow feasibility problem is to 
compare it with the existing state-of-the-art algorithms 
implemented within optimization toolboxes. Therefore, in order 
to have a fair comparison between the two, and considering the 
efficiency of the circuit simulation approach for building the 
Hessian and Jacobian matrices, we have developed a prototype 
circuit simulator in MATLAB, where the Gradient and Hessian 
information are built in the same way as in  SUGAR, and the 
only difference represents the respective set of existing 
optimization algorithms applied to control the NR step size. For 
this comparison, we used the optimization algorithms 
implemented within the FMINCON toolbox in MATLAB. The 
runtime comparisons are performed using the MATLAB 
SUGAR prototype simulator on a MacBook Pro 2.9 GHz Intel 
Core i7 for the following five test cases: (1) 3375wp, (2) 
9241pegase, (3) ACTIVSg10k, (4) ACTIVSg25k and (5) 
ACTIVSg70k [35], that are further solved for three operating 
conditions (nominal loading conditions as defined in the file, 
generation/load increase of 25%, and generation/load decrease 
of 25%). The runtime comparisons for initializing with the 
input file operating point and a flat start are given in Fig. 8-Fig. 
10. As can be seen from the respective figures: 

i.   It can be said that the two smaller-size test cases 
performed equally well with both SUGAR and traditional 
heuristics for all scenarios and initializations. This can be 
further explained by the initial starting points of the 
examined equality constrained optimization problems 
being in the vicinity of the respective optimal solutions. 

ii.   As the size of problem increases and the initial starting 
points move away from the optimization solutions 
(increased loading, flat start, etc.), the traditional 
heuristics start slowing down the convergence process due 
to the single step line-search methodology that limits all 
of the NR steps with a single constant factor [29]. 

iii.   In contrast to the traditional optimization heuristics, 
however, the heuristics based on physical characteristics 
of the problem incorporated within the SUGAR solver 
significantly outperforms the traditional optimization 

heuristics particularly when it comes to larger scale test 
cases. 

iv.   Finally, the experiments performed also indicate the 
importance of a robust and efficient simulation and 
optimization framework when a good initialization is not 
known, such as for extreme contingency and other 
planning analyses. The preliminary results indicate a 
significant correlation between the “goodness” of the 
initialization and the traditional simulator efficiency, 
which is particularly highlighted as the size of cases 
increases.  

 
Fig. 8. Simulation Runtime comparison. SUGAR vs. traditional state-of-the-

art algorithms for ‘Off-peak’ loading conditions. 

 
Fig. 9. Simulation Runtime comparison. SUGAR vs. traditional state-of-the-

art algorithms for nominal loading conditions.  

 
Fig. 10. Simulation Runtime comparison. SUGAR vs. traditional state-of-the-

art algorithms for ‘On-peak’ loading conditions. 

3. Feasibility analysis of ill-conditioned 11 bus test case 

The authors in [32] have demonstrated that the 11-bus 
distribution test case is genuinely ill-conditioned beyond a 
maximum loading factor of 99.82%. Hence, numerical error or 
the choice of convergence criterion can cause the difference 
between infeasibility (divergence of the numerical algorithm) 
or convergence to the operating solution.  

In this study, the power flow feasibility analysis is solved for 
slight loading factor increments to locate and examine the 
appearance and evolution of infeasible regions within the test 
case. The simulation results representing the network topology 
for four different loading factors (three of which are provably 
infeasible) are presented in Fig. 11. Referring to Fig. 11, after 
the known point of collapse is reached, the system first becomes 
infeasible (indicated by the heatmap around the infeasible bus) 
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furthest from the slack generator (bus 11). As the loading factor 
keeps increasing, the infeasibility, which represents the amount 
of additional current needed to prevent the violation of KCL at 
each bus, evolves throughout the system. 

To compare the proposed Power Flow Feasibility Analysis 
(PFFA) solved using the circuit simulation techniques and 
MATLAB ‘FMINCON’ solver with an existing traditional 
formulation that minimizes infeasible real and reactive power 
injection within the power-mismatch formulation, we 
implemented the formulation from [16] in ‘FMINCON’ with 
the MATLAB optimization toolbox. The iteration count and 
total infeasible p.u. real and reactive powers (PINF and QINF) for 
two loading factors are shown in Table 3. 

As expected, both formulations were able to converge to the 
same optimal infeasibility values from a flat start. The proposed 
PFFA that was solved as a circuit simulation problem, however, 
converged to the optimal solution much faster, especially near 
the system collapse point where the power flow Jacobian is 
singular. This can be attributed to the efficient circuit 
simulation limiting heuristics that we apply in our simulation 
framework [4]-[7] for faster convergence. 

TABLE 4. RESULT COMPARISON FOR ILL-CONDITIONED 11 BUS CASE  

Formulation Loading factor: 1.0000 Loading factor: 1.1000 
Iter. PINF | QINF [p.u.] Iter. PINF [p.u.] QINF [p.u.] 

PFFA + ckt. techniques 5 3.18E-4 2.59E-4 4 0.040  0.032 
PFFA with FMINCON 45 3.18E-4 2.59E-4 34 0.040  0.032 
PQ Formulation [16] 73 3.18E-4 2.59E-4 29 0.040 0.032 

 
Fig. 11. Evaluating the feasibility of ill-conditioned 11 bus test case. The 

magnitude of infeasibility current is normalized with respect to the highest 
one encountered throughout the simulation of all four cases. 

4. Remedial action for located infeasibility 
Divergence of the power flow simulation during an N-1 

analysis does not provide complete information about the 
analyzed grid. In this example, we study a test case of a real 
power system with over 5k buses that collapses under a 
contingency. Solving the case using the proposed method 
provided information about the localized area that caused the 
infeasibility due to a reactive power deficiency, as shown in 
Fig. 12. By activating a continuous FACTS device near the 
infeasible region, we were able to restore the system feasibility. 

 
Fig. 12.Detecting and correcting the infeasibility on a real-life contingency 

case. Note that the network connectivity doesn’t represent the true 
connectivity of the examined case.  

5. Synthetic USA grid test case during N-1 contingency  
The scalability of the proposed PFFA formulation is further 

tested by analyzing the feasibility of a test case representing the 
entire US grid, consisting of synthetic versions of the Eastern 
and Western Interconnections (WECC) as well as the ERCOT 
grid [35], during an N-1 contingency. The N-1 contingency we 
applied represented disconnecting the branch between buses 
23510 (SENECA 71) and 23515 (SENECA76) within the 
Oconee Nuclear station, near Seneca, SC. PFFA simulation 
converged in 10 iterations and the results indicate that this 
contingency represents an infeasible system, with the local area 
of infeasibility shown in Fig. 13.  

After analyzing the affected infeasible area and replacing the 
fixed shunt capacitor connected at the most infeasible bus 
(SENECA 7.1) with a continuous shunt device, the system 
becomes feasible again. Most importantly, as in the previous 
real-life contingency test case, the detected infeasibilities were 
local and mostly due to reactive power deficiency. In this case, 
by replacing the fixed shunt at bus number 23510 with 
continuous shunt, we were able to restore the test case to a 
feasible state. It should be noted that actual U.S. Eastern 
Interconnection testcases were found to be N-1 secure [6]. 

 
Fig. 13. Detecting infeasibility due to the contingency in synthetic test case 
representation of USA grid. Note that replacing the fixed shunt capacitor at 

bus 23515 with a variable capacitor restores the feasibility of the power flow. 

Lastly, as shown by the simulation results, the placement of 
infeasibility current sources within the power flow circuit can 
inform various corrective actions or planning decisions. For 
instance, the 11-bus test case presents an application toward 
optimal load shedding, while the real-life contingency test case 
optimally indicated the reactive power compensating device 
that has to be activated in order to restore feasibility of the 
network. Hence the respective placement of infeasibility 
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current sources to all load buses and existing variable shunt 
devices will provide all the necessary information needed to 
analyze the feasibility of the simulation. Importantly, placing 
the infeasibility sources at nodes of critical infrastructure within 
the grid model can allow optimal planning for a new corrective 
device that would ensure N-1 contingency criteria required by 
NERC are met [36].  

VIII.   CONCLUSIONS 
In this paper we introduced the framework for evaluating the 

feasibility of power flow cases as an extension of the recently 
introduced circuit theoretic approach for simulating the power 
flow problem. The infeasibility current sources and adjoint 
power flow network models are derived, and once coupled to 
the power flow circuit are shown to optimally prevent violation 
of KCL that arise for infeasible systems as a consequence of 
constant power models. Subsequently, recently proposed circuit 
simulation techniques are extended to ensure robust 
convergence properties of the adjoint power flow circuit. 
Finally, the proposed framework was demonstrated to provide 
an efficient methodology for locating and evaluating power 
flow infeasibilities. The authors believe the proposed 
framework has a number of practical applications within 
transmission planning and operations. Localized and quantified 
infeasibilities can help engineers pinpoint collapsed load 
pockets in large networks, design preventive and corrective 
actions to resolve voltage collapse, and identify regions of 
reactive and/or real power deficiencies when planning for high 
renewable penetration [39] 
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