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 Abstract—Robust simulation is essential for reliable operation 

and planning of transmission and distribution power grids.  At 

present, disparate methods exist for steady-state analysis of the 

transmission (power flow) and distribution power grid (three-

phase power flow). Due to the non-linear nature of the problem, it 

is difficult for alternating current (AC) power flow and three-

phase power flow analyses to ensure convergence to the correct 

physical solution, particularly from arbitrary initial conditions, or 

when evaluating a change (e.g. contingency) in the grid. In this 

paper, we describe our equivalent circuit formulation approach 

with current and voltage variables that models both the positive 

sequence network of the transmission grid and three-phase 

network of the distribution grid without loss of generality. The 

proposed circuit models and formalism enable the extension and 

application of circuit simulation techniques to solve for the steady-

state solution with excellent robustness of convergence. Examples 

for positive sequence transmission and three-phase distribution 

systems, including actual 75k+ nodes Eastern Interconnection 

transmission test cases and 8k+ nodes taxonomy distribution test 

cases, are solved from arbitrary initial guesses to demonstrate the 

efficacy of our approach. 
Index Terms— circuit simulation methods, continuation 

methods, convergence problems, equivalent circuit approach, 

power flow, robust convergence, steady-state analysis, three-phase 

power flow, Tx stepping method 

I.  INTRODUCTION 

n interconnected electric grid is a network of 

synchronized power providers and consumers that are 

connected via transmission and distribution lines and 

operated by one of multiple entities. Reliable and secure 

operation of this electric grid is of utmost importance for 

maintaining a country’s economy and well-being of its citizens.  

To operate the grid reliably and securely under all 

conditions, as well as adequately plan for the future, it is 

essential that one can robustly analyze the grid off-line and in 

real-time. At present, numerous analysis methods exist for 

operation and planning of the grid. These can be broadly 

categorized into one of the following: i) steady-state analysis in 

the frequency domain (power flow, three phase power flow, and 

harmonic analyses), ii) transient and steady-state analysis in 

time domain, iii) analysis for optimal dispatch of resources, and 

iv) other market dispatch-based analyses. Among these 

analyses, fundamental frequency based steady-state analysis 

(power flow and three-phase power flow) is essential for the 

day-to-day operation as well as future planning of the grid. 

                                                           
This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under award no. FA8750-17-1-0059 for the RADICS program. 
1Authors are with the Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA, (e-mail: {amritanp, mjeremin, 

mwagner1, dbromber, pileggi}@andrew.cmu.edu). 
2Author is with the Power System Laboratory, ETH Zurich, (e-mail: hug@eeh.ee.ethz.ch). 

 

Furthermore, the solution to the steady-state analysis serves as 

the initial state for transient analysis as well as the optimal 

power flow problem. Due to its critical importance, research 

has produced significant advances toward improving the 

convergence of these solution methods [5]-[12] . 

At present, steady-state simulation is divided into two 

domains, high-voltage transmission systems and sub-station 

level voltage distribution systems. Disparate methods exist for 

analyzing these two (transmission and distribution) systems. 

The steady-state solution for the high voltage transmission 

system is obtained via positive sequence AC power flow 

analysis (often referred to as power flow analysis), whereas the 

steady-state operating point for the distribution system is 

obtained via three-phase AC power flow analysis. The industry 

standard for solving the positive sequence AC power flow 

problem is the ‘PQV’ formulation [1], wherein nonlinear power 

mismatch equations are solved for bus voltage magnitudes and 

angles that further define the steady-state operating point of the 

system. In contrast, the backward-forward sweep method [2] 

and the current injection method (CIM) [3] are primarily used 

for obtaining the steady-state solution of the three-phase power 

flow problem for the distribution grid.  

In their existing forms, the solution methods for power flow 

and three-phase power can suffer from lack of convergence 

robustness [5], [10]. The ‘PQV’ based formulation for the 

positive sequence power flow problem is known to diverge or 

converge to non-physical solutions for ill-conditioned [2] and 

large scale (>50k buses) systems [20], where a non-physical 

solution corresponds to a system that contains low voltages or 

demonstrates angular instability. For distribution system 

problems, the backward-forward sweep method that was 

proposed to solve radial and weakly meshed distribution 

systems with high R/X ratio [2] has difficulties converging for 

heavily meshed systems with more than a single source  of 

generation [12]. The CIM method based on Dommel’s work in 

1970 [4], like the equivalent circuit approach proposed in this 

paper, represents the currents and voltages in terms of 

rectangular coordinates, but is challenged by incorporation of 

multiple PV buses in the system [13]-[14]. In general, of the 

known challenges associated with convergence for existing 

power flow and three-phase power flow solution methods, the 

two that are most detrimental are convergence to low-voltage 

or unacceptable solutions [15] and divergence [5].  
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The objective and contribution of the approaches described 

in this paper is to provide robust power flow and three-phase 

power flow convergence. Specifically, a generalized approach 

for power flow and three-phase power flow analyses that can 

ensure convergence to correct physical solution independent of 

the choice of initial conditions. 

The factors that are the most fundamental toward making 

these problems challenging are the use of non-physical 

representations for modeling the power grid components, and 

in the case of the ‘PQV’ formulation, the use of inherently non-

linear power mismatch equations to formulate the problem. The 

non-physical representations of the system equipment may not 

capture the true behavior of the model in the entire range of 

system operation. For example, an approximated macro-model 

of a generator that is represented via positive sequence or three-

phase PV node can result in convergence to a low-voltage 

solution or divergence due to its quadratic voltage 

characteristics. Similarly, the inherent non-linearities in the 

‘PQV’ formulation almost always cause divergence for large 

(>50k) and ill-conditioned test cases [20] when solved from an 

arbitrary set of initial conditions. This lack of a physics-based 

formulation, along with the methods that can constrain the non-

physics based models in their physical space, is what renders 

the existing power flow and three-phase power flow problem 

and solution approaches to be “non-robust.”  

To develop a robust solver for the steady-state solution of 

the power grid, it is imperative that the solver can efficiently 

and effectively navigate through the aforementioned challenges 

while converging to a solution that is both meaningful and 

correct. Intuitively and physically, both the transmission and 

distribution electric grids correspond to an electric circuit. Our 

approach toward solving the power flow and three-phase power 

flow problems is to utilize circuit modeling and formalism to 

develop new algorithms that will robustly solve them. Toward 

this goal, we propose a two-pronged approach. First, the use of 

an equivalent circuit formulation in terms of the true state 

variables of currents and voltages [16]-[18] to model both the 

transmission and distribution power grid (Sect. III.). Secondly, 

the adaptation and application of circuit simulation methods 

[19]-[22] to ensure robust convergence to correct physical 

solutions (Sect. IV.) for power flow and three-phase power flow 

problems. To demonstrate the interaction between the two, 

Sect. V of this paper discusses the general algorithm for solving 

the power flow and three-phase power flow problems. Several 

examples are shown which demonstrate the efficacy of our 

approach. 

II.  BACKGROUND 

A power grid in its simplest form can be represented by a set 

of 𝒩 buses, where the sets of generators  𝒢  and load demands 

ℒ are subsets of 𝒩, which are further connected by a set of line 

elements, 𝒯X and set of transformers 𝑥𝑓𝑚𝑟𝑠. Furthermore, there 

is a set of slack buses (one for each island in the system) 

represented by ξ. In addition to these, the power grid may 

contain other elements, such as shunts, flexible alternating 

current transmission system (FACTS), etc. The objective of 

steady-state analysis of the power grid is to model the 

fundamental frequency component of the power grid and solve 

for the complex voltages at its buses. The high voltage 

transmission network of the grid generally operates under 

balanced conditions, and therefore, the steady-state solution of 

the transmission network is obtained via positive sequence 

power flow model and analysis. In contrast, the distribution 

network of the power grid can operate under unbalanced 

conditions, and therefore we must apply three-phase power 

flow model and analysis to find the steady-state solution of the 

distribution grid. In the following sub-sections, we discuss the 

current formulations used for steady-state analysis of 

transmission and distribution networks and highlight their 

limitations. 

A.  ‘PQV’ based Formulation for Positive Sequence Power 

Flow Problem 

The ‘PQV’ based power flow formulation is the industry 

standard for solving for the steady-state solution of the high 

voltage transmission network. In this formulation, a set of 

2(𝒩 − ξ) −  𝒢 power mismatch equations are solved for 

unknown complex voltage magnitudes and angles of the system 

using the Newton Raphson (NR) method. The set of power 

mismatch equations are defined as follows: 

𝑃𝐺
𝑖 − 𝑃𝐿

𝑖 = |𝑉𝑖|∑|𝑉𝑙|(𝐺𝑖𝑙
𝑌 𝑐𝑜𝑠 𝑖𝑙 + 𝐵𝑖𝑙

𝑌 𝑠𝑖𝑛 𝑖𝑙)

𝒩

𝑙=1

 (1) 

𝑄𝐺
𝑖 − 𝑄𝐿

𝑖 = |𝑉𝑖|∑|𝑉𝑙|(𝐺𝑖𝑙
𝑌 𝑠𝑖𝑛 𝑖𝑙 − 𝐵𝑖𝑙

𝑌 𝑐𝑜𝑠 𝑖𝑙)

𝒩

𝑙=1

 (2) 

where, 𝑃𝐺
𝑖 + 𝑗𝑄𝐺

𝑖  and 𝑃𝐿
𝑖 + 𝑗𝑄𝐿

𝑖  are the complex generation and 

complex load at the node 𝑖 and 𝐺𝑖𝑙
𝑌 + 𝑗𝐵𝑖𝑙

𝑌  is the complex 

admittance between the nodes 𝑖 and 𝑙.  
In order to solve for unknown complex voltages 𝑉𝑖  ∠𝑖 in 

the system, the real and reactive power mismatch equations 

given by (1)-(2) are solved for the set of (𝒩 − ξ − 𝒢 ) buses in 

the system, whereas only real mismatch equations (1) are 

solved for the set of buses with generators 𝒢 connected to it. 

Importantly, this ‘PQV’ formulation is inherently non-linear, 

since the set of network constraints result in non-linear power 

mismatch equations independent of physics of the models used. 

For example, in the ‘PQV’ formulation, a linear network 

consisting of linear models for the slack bus, the transmission 

lines and the loads would correspond to a non-linear set of 

power mismatch equations, a feature that could result in 

convergence difficulties for systems even trivial in size. 

B.  Current Injection Method for Three-Phase Power Flow 

Problem 

Until recently, the backward forward sweep method was the 

most commonly used method for the steady-state analysis of the 

radial and weakly meshed distribution systems [2]. The method 

was preferred over the ‘PQV’ formulation due to the radial 

nature of the distribution grid and high R/X ratios of the 

distribution lines, both of which are known to cause 

convergence difficulties for the NR method [2] with ‘PQV’ 

formulation. However, the backward forward sweep method 

itself is prone to convergence difficulties for systems that are 

highly meshed or have multiple sources [12].  

The current injection method (CIM) for the three-phase 

power flow problem [3] was proposed to address challenges 

associated with the ‘PQV’ formulation and the backward-

forward sweep method. In the CIM formulation, the non-linear 
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current mismatch equations for the system buses are solved via 

NR method for each individual phase with complex rectangular 

real and imaginary voltages (𝑉𝑅𝑖
𝛺 + 𝑗𝑉𝐼𝑖

𝛺)  as the unknown 

variables. The current mismatch equations for the three-phase 

power flow problem are defined as follows [3]: 

𝛥𝐼𝑅𝑖
𝛺 =

(𝑃𝑖
𝑠𝑝
)
𝛺
𝑉𝑅𝑖
𝛺 + (𝑄𝑖

𝑠𝑝
)
𝛺
𝑉𝐼𝑖
𝛺

(𝑉𝑅𝑖
𝛺)
2
+ (𝑉𝐼𝑖

𝛺)
2

−∑ ∑ (𝐺𝑖𝑙
𝛺𝑡𝑉𝑅𝑖

𝑡 − 𝐵𝑖𝑙
𝛺𝑡𝑉𝐼𝑖

𝑡)

𝑡𝜖𝛺𝑠𝑒𝑡

𝒩

𝑙=1

 

(3) 

𝛥𝐼𝐼𝑖
𝛺 =

(𝑃𝑖
𝑠𝑝
)
𝛺
𝑉𝐼𝑖
𝛺 − (𝑄𝑖

𝑠𝑝
)
𝛺
𝑉𝑅𝑖
𝛺

(𝑉𝑅𝑖
𝛺)
2
+ (𝑉𝐼𝑖

𝛺)
2

−∑ ∑ (𝐺𝑖𝑙
𝛺𝑡𝑉𝐼𝑖

𝑡 − 𝐵𝑖𝑙
𝛺𝑡𝑉𝑅𝑖

𝑡 )

𝑡𝜖𝛺𝑠𝑒𝑡

𝒩

𝑙=1

 

(4) 

where 𝛥𝐼𝑅𝑖
𝛺 + 𝑗𝛥𝐼𝐼𝑖

𝛺 is the net current mismatch in phase 𝛺 at 

node 𝑖 and (𝑃𝑖
𝑠𝑝
)
𝛺
+ 𝑗(𝑄𝑖

𝑠𝑝
)
𝛺

 is the specified complex power 

injection at node 𝑖. The set Ωset includes phases a, b and c. 

Although, the CIM method is known to improve the 

convergence properties for heavily and weakly meshed three-

phase radial distribution systems with high R/X ratio, the 

method is known to diverge for test-cases with high penetration 

of PV buses [13]. Traditionally, the number of PV buses in the 

distribution system were limited to a small number; however, 

with the advent of large scale installation of distributed 

generation (DGs) and voltage control devices in the distribution 

system this is no longer true. Therefore, it is essential that a 

robust three-phase power flow formulation can robustly handle 

high penetration of PV buses and other voltage control devices 

in the system. 

III.  EQUIVALENT CIRCUIT FORMULATION 

We extend the equivalent circuit approach in [16]-[20] for 

steady-state analysis of the transmission and distribution power 

grid to tackle the challenges exhibited by the existing 

formulations. This approach for generalized modeling of the 

power system in steady-state (i.e. power flow and three-phase 

power flow) represents both the transmission and distribution 

power grid elements in terms of equivalent circuit elements 

without loss of generality. It was shown that each of the power 

system components can be directly mapped to an equivalent 

circuit model based on the underlying relationship between 

current and voltage state variables. Importantly, this 

formulation can represent any physics based model or 

measurement based semi-empirical models as a sub-circuit, as 

shown in [24], [25] and [26], and these models can be combined 

hierarchically with other circuit abstractions to build larger 

aggregated models. In the following section, we discuss generic 

equivalent circuit representations of  power system components 

for both the positive sequence power flow problem and the 

three-phase power flow problem. Note that throughout the 

paper, the symbol superscript Ω in the mathematical 

expressions of the equivalent circuit models represents a phase 

from the set Ω𝑠𝑒𝑡  of three phases a, b and c for the three-phase 

problem and represents the positive sequence (p) component for 

the power flow problem. 

A.  PV Bus or the Generator Model 

In the equivalent circuit approach, the generator (PV) bus 

model is modeled via a complex current source [19] and has the 

same behavior as of the PV node in power flow and three-phase 

power flow problems. To enable the application of NR, this 

complex current source is split into real and imaginary current 

sources (𝐼𝑅𝐺
Ω  and 𝐼𝐼𝐺

Ω , respectively). This is necessary due to the 

non-analyticity of complex conjugate functions [16]. The 

resulting equations for the PV model in the power flow and 

three-phase power problem are: 

𝐼𝑅𝐺
Ω =

𝑃𝐺
Ω𝑉𝑅𝐺

Ω + 𝑄𝐺
Ω𝑉𝐼𝐺

Ω

(𝑉𝑅𝐺
Ω )2 + (𝑉𝐼𝐺

Ω)2
 (5) 

𝐼𝐼𝐺
Ω =

𝑃𝐺
Ω𝑉𝐼𝐺

Ω −𝑄𝐺
Ω𝑉𝑅𝐺

Ω

(𝑉𝑅𝐺
Ω )2 + (𝑉𝐼𝐺

Ω)2
 (6) 

Additional constraints that allow the generators to control the 

voltage magnitude either at its own node or any other remote 

node in the system are modeled by a control circuits, as shown 

in the following subsection. In the case of power flow problem, 

a single control circuit is needed whereas for the three-phase 

power flow problem, three such control circuits are needed for 

each PV bus in the system. The reactive power 𝑄𝐺
Ω of the 

generator acts as the additional unknown variable for the 

additional constraint that is introduced due to voltage control. 

In case of three-phase power flow, three such additional 

variables and constraints are introduced. 

As an example, the equivalent circuit for the positive 

sequence model for a PV bus used in power flow is shown in 

Fig. 1 for the 𝑘 + 1𝑡ℎ iteration of NR. It is constructed by 

linearizing the set of equations (5)-(6) for the positive sequence 

parameters and then representing the resulting equations using 

fundamental circuit elements (detailed procedure for this 

provided in [16]). To construct the PV bus equivalent circuit for 

three-phase power flow problem, three such circuits are first 

constructed and then are connected in grounded-wye 

configuration.  

 
Figure 1: Equivalent Circuit Model for PV generator model. 

B.  Voltage Regulation of a Bus 

Numerous power grid elements such as generators, FACTS 

devices, transformers, shunts etc., can control a voltage 

magnitude at a given node in the system. Moreover, they can 

control the voltage magnitude (𝑉𝑠𝑒𝑡
Ω ) at either their own node 𝒪 

or a remote node 𝒲 in the system. In equivalent circuit 

formulation, we represent the control of the voltage magnitude 

by a control circuit (Fig. 2), which is governed by the following 

expression: 

𝐹𝒲
Ω ≡ (𝑉𝑠𝑒𝑡

Ω )2 − (𝑉𝑅𝒲 
Ω )2 − (𝑉𝐼𝒲 

Ω )2 = 0 (7) 

The circuit in Fig. 2 is derived from the linearized version 

of (7). For the power flow problem, it is stamped (i.e. values are 

added to the Jacobian in a modular way) for each node 𝒲  in 

+

_
𝑉𝑅𝐺
𝑝   1

𝐼𝑅𝐺
𝑝   1

+

_
𝑉𝐼𝐺
𝑝  1

𝐼𝐼𝐺
𝑝   1
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 𝑅
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 𝐼𝑅𝐺
 

 𝑉𝑅𝐺
𝑝 𝑉𝑅𝐺

𝑝  −
 𝐼𝑅𝐺
 

 𝑉𝐼𝐺
𝑝 𝑉𝐼𝐺

𝑝 −
 𝐼𝑅𝐺
 

 𝑄𝐺
𝑝 𝑄𝐺

𝑝  𝐼
 = 𝐼𝐼𝐺

𝑝  −
 𝐼𝐼𝐺
 

 𝑉𝑅𝐺
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𝑝  −
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the system whose voltage is being controlled such that there 

exists at least one single path between the node 𝒲 and the 

equipment’s node 𝒪 that is controlling it. Similarly, for three-

phase power flow three of these circuits are stamped for each 

node 𝒲. The additional unknown variables for these additional 

constraints are dependent on the power system device that is 

controlling the voltage magnitude. For example, the additional 

unknown variable for a generator is its reactive power 𝑄Ω, 

whereas in the case of transformers, it is the transformer tap 

𝑡𝑟Ω, and for FACTS devices it is the firing angle 𝜑Ω. The 

previous section already described how the additional unknown 

variable 𝑄Ω for PV buses is integrated into the respective 

equivalent circuits for generators. 

 
Figure 2: Voltage magnitude constraint control equivalent circuit. 

C.  ZIP Load Model 

In this section, we derive the positive sequence and three-

phase model for the ZIP load. The ZIP load models the 

aggregated load in the system as a mix of constant impedance 

(𝑍 
𝛺 + 𝑗𝑍𝑄

𝛺), constant current (𝐼 
𝛺 + 𝑗𝐼𝑄

𝛺), and constant 

power (𝑆 
𝛺 + 𝑗𝑆𝑄

𝛺) load behavior, which can be mathematically 

represented as follows: 

(𝑃𝑖
𝑍𝐼 )

𝛺
= 𝑍 

𝛺(|𝑉𝑖
𝛺|)

2
+ 𝐼 

𝛺(|𝑉𝑖
𝛺|) + 𝑆 

𝛺  (8) 

(𝑄𝑖
𝑍𝐼 )

𝛺
= 𝑍𝑄

𝛺(|𝑉𝑖
𝛺|)

2
+ 𝐼𝑄

𝛺(|𝑉𝑖
𝛺|) + 𝑆𝑄

𝛺  (9) 

In the equivalent circuit approach, the equations for the ZIP 

load model can be re-written as: 

(𝐼𝑅𝑖
𝑍𝐼 )

𝛺
=  𝑌 

𝛺𝑉𝑅𝑖
𝛺 − 𝑌𝑄

𝛺𝑉𝐼𝑖
𝛺 + 

𝑆 
𝛺𝑉𝑅𝑖

𝛺 + 𝑆𝑄
𝛺𝑉𝐼𝑖

𝛺

(𝑉𝑅𝑖
𝛺)
2
+ (𝑉𝐼𝑖

𝛺)
2 

(10) 

+ (√𝐼 
𝛺2 + 𝐼𝑄

𝛺2) . 𝑐𝑜𝑠 (𝑖
𝛺 − 𝐼𝑝𝑓

𝛺 ) 

(𝐼𝐼𝑖
𝑍𝐼 )

𝛺
=  𝑌 

𝛺𝑉𝐼𝑖
𝛺 + 𝑌𝑄

𝛺𝑉𝑅𝑖
𝛺 + 

𝑆 
𝛺𝑉𝐼𝑖

𝛺 − 𝑆𝑄
𝛺𝑉𝑅𝑖

𝛺

(𝑉𝑅𝑖
𝛺)
2
+ (𝑉𝐼𝑖

𝛺)
2 

(11) 

+ (√𝐼 
𝛺2 + 𝐼𝑄

𝛺2) . 𝑠𝑖𝑛 (𝑖
𝛺 − 𝐼𝑝𝑓

𝛺 ) 

where: 

𝐼𝑝𝑓
𝛺 =  𝑡𝑎𝑛−1 (

𝐼𝑄
𝛺

𝐼 
𝛺) (12) 

𝑖
𝛺 =   𝑡𝑎𝑛−1 (

𝑉𝐼𝑖
𝛺

𝑉𝑅𝑖
𝛺) (13) 

𝑌𝑃
𝛺 + 𝑗𝑌𝑄

𝛺 =   
1

𝑍𝑃
𝛺 + 𝑗𝑍𝑄

𝛺 (14) 

For the load model given in (10) through (14), the constant 

impedance part of the load is linear, whereas the constant 

current and constant power part of the aggregated load is 

nonlinear. Once, (10)-(11) are linearized, they are used to 

construct the equivalent circuit models for both the power flow 

and three-phase power flow problem. The constructed three-

phase model of the ZIP load model can either be connected in 

wye or delta formation. As an example, ZIP load model 

connected in wye and delta formation is shown in Fig. 3. 

 
Figure 3: Real circuit for a) wye connected ZIP Load Model (on left) b) delta 

(D) connected ZIP load model (on right). 

It is important to note that both the ZIP and PQ load models 

result in non-linear network constraints for both the ‘PQV’ and 

CIM formulations. In the ‘PQV’ formulation the non-linearities 

in the network constraints are due to the use of power mismatch 

equations whereas in the CIM, the non-linearities are due to PQ 

and ZIP model equations. These added non-linearities are one 

of the primary causes of divergence and convergence to low 

voltage solutions. To address this problem, we have proposed 

an accurate and yet linear BIG load model [25]-[27]. 

D.  BIG Linear Load Model 

The BIG aggregated load model was proposed based on the 

circuit theoretic approach in [25]-[27] and aims to create a 

linear load model that can capture the true measure and 

sensitivity of the aggregated load in the system. The model is 

comprised of a susceptance (B), independent current source (I), 

and conductance (G). The complex governing equation of the 

generalized load current for the BIG load model is given by: 

(𝐼𝑅
𝐵𝐼𝐺)

Ω
+ 𝑗(𝐼𝐼

𝐵𝐼𝐺)
Ω
= ( 𝑅

𝐵𝐼𝐺)
Ω
+ 𝑗( 𝐼

𝐵𝐼𝐺)
Ω

 
(15) 

+((𝑉𝑅
𝐵𝐼𝐺)

𝛺
+ 𝑗(𝑉𝐼

𝐵𝐼𝐺)
𝛺
) ((𝐺𝐵𝐼𝐺)𝛺 + 𝑗(𝐵𝐵𝐼𝐺)𝛺) 

where ( 𝑅
𝐵𝐼𝐺)

Ω
+ 𝑗( 𝐼

𝐵𝐼𝐺)
Ω

 represents the base value for the 

modeled aggregated load and the corresponding complex 

admittance ((𝐺𝐵𝐼𝐺)𝛺 + 𝑗(𝐵𝐵𝐼𝐺)𝛺) captures the voltage 

sensitivities. For instance, a negative conductance in 

conjunction with complex current (( 𝑅
𝐵𝐼𝐺)

Ω
+ 𝑗( 𝐼

𝐵𝐼𝐺)
Ω
) mimics 

the inverse current/voltage sensitivity relationship, similar to 

constant power (PQ) load behavior and positive conductance in 

conjunction with complex current source will represent the 

positively correlated current/voltage sensitivity relationship, 

similar to the impedance load behavior. Both the positive and 

negative impedances capture the change in load with voltage 

with respect to the portion of the load that is modeled by the 

current source. Fig. 4 shows the positive sequence (p) BIG load 

model. Similar to the ZIP load model, the three-phase BIG load 

model can be constructed by connecting the equivalent circuits 

of individual phases in wye or delta formation. 

 
Figure 4: Equivalent circuit of a BIG load model 

𝑉𝑠𝑒𝑡
Ω ℎ𝑖𝑠𝑡

+ _

+_

Real Circuit 

+
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𝐵𝐼𝐺 𝑝

𝐼𝑅
𝐵𝐼𝐺 𝑝

 𝑅
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+

_

𝑉𝐼
𝐵𝐼𝐺 𝑝
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IV.  CIRCUIT SIMULATION METHODS 

Decades of research in circuit simulation have demonstrated 

that circuit simulation methods can be applied for determining 

the DC state of highly non-linear circuits using NR. These 

techniques have been shown to make NR robust and practical 

for large-scale circuit problems [21]-[22] consisting of billions 

of nodes. Most notable is the ability to guarantee convergence 

to the correct physical solution (i.e. global convergence) and the 

capability of finding multiple operating points [28]. We have 

previously proposed analogous techniques for ensuring 

convergence to the correct physical solution for the positive 

sequence power flow problem [19]-[20]. In this section, we 

extend these methods to be used with positive-sequence power 

flow and three-phase power flow problems alike. 

A.  General Methods 

    1)  Variable Limiting 

The solution space of the system node voltages in a power 

flow and three-phase power flow problem are well defined. 

While solving these problems, a large NR step may step out of 

this solution space and result in either divergence or 

convergence to a non-physical solution. It is, therefore, 

important to limit the NR step before an invalid step out of the 

solution space is made. In [19], we proposed the variable 

limiting method to achieve the postulated goal for power flow 

problem. In this technique, the state variables that are most 

sensitive to initial guesses are damped when the NR algorithm 

takes a large step out of the pre-defined solution space. Note, 

however, that not all the system variables are damped for the 

variable limiting technique, as is done for traditional damped 

NR. Circuit simulation research has shown that damping the 

most sensitive variables provides superior convergence 

compared to damped NR in general [21]. 

To apply variable limiting in our prototype simulator for the 

power flow and three-phase power flow problem, the 

mathematical expressions for the PV nodes in the system are 

modified as follows: 

𝐼𝐶𝐺
𝛺   1

=   𝜍
 𝐼𝐶𝐺
𝛺

 𝑉𝑅𝐺
𝛺 (𝑉𝑅𝐺

𝛺 k 1
− 𝑉𝑅𝐺

𝛺 k
)⏟          

∆𝑉𝑅𝐺
𝛺

+ 𝐼𝐶𝐺
𝛺 k

  

(16) 

+ 𝜍
 𝐼𝐶𝐺
𝛺

 𝑉𝐼𝐺
𝛺 (𝑉𝐼𝐺

𝛺  1 − 𝑉𝐼𝐺
𝛺 )⏟          

 ∆𝑉𝐼𝐺
𝛺

+
 𝐼𝐶𝐺
𝛺

 𝑄𝐺
𝛺 (𝑄𝐺

𝛺  1 − 𝑄𝐺
𝛺 ) 

where, 0 ≤ ς ≤ 1. The magnitude of ς is dynamically varied 

through heuristics such that convergence to the correct physical 

solution is achieved in the most efficient manner. The heuristics 

depend on the largest delta voltage (∆𝑉𝑅𝐺
𝛺 , ∆𝑉𝐼𝐺

𝛺 ) step during 

subsequent NR iterations. If during subsequent NR iterations, a 

large step (∆𝑉𝑅𝐺
𝛺 , ∆𝑉𝐼𝐺

𝛺 ) is encountered, then the factor ς is 

decreased. The factor ς is scaled back up if consecutive NR 

steps result in monotonically decreasing absolute values for the 

largest error. 

    2)  Voltage Limiting 

An equally simple, yet effective, technique is to limit the 

absolute value of the delta step that the real and imaginary 

voltage vectors can make during each NR iteration. This is 

analogous to the voltage limiting technique used for diodes in 

circuit simulation, wherein the maximum allowable voltage 

step during NR is limited to twice the thermal voltage of the 

diode [22]. Similarly, for the power flow and three-phase power 

flow analyses, a hard limit is enforced on the normalized real 

and imaginary voltages in the system. The mathematical 

implementation of voltage limiting in our formulation is as 

follows: 

(𝑉𝐶
Ω)k 1 = 𝑚𝑖𝑛

𝑉𝐶
𝑚𝑖𝑛
𝑚𝑎𝑥
𝑉𝐶
𝑚𝑎𝑥
((𝑉𝐶

Ω)k + 𝛿𝑆𝑚𝑖𝑛(|∆(𝑉𝐶
Ω)k|, ∆𝑉𝐶

𝑚𝑎𝑥))   (17) 

𝑚𝑖𝑛
𝑉𝐶
𝑚𝑖𝑛
𝑚𝑎𝑥
𝑉𝐶
𝑚𝑎𝑥

= {

𝑉𝑐
𝑚𝑎𝑥, 𝑖𝑓 𝑥 >  𝑉𝑐

𝑚𝑎𝑥 

𝑉𝑐
𝑚𝑖𝑛, 𝑖𝑓 𝑥 <  𝑉𝑐

𝑚𝑖𝑛 
𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18) 

and 𝛿𝑆 = 𝑠𝑖𝑔𝑛 (∆(𝑉𝐶
Ω)
k
) and 𝐶 ∈ {𝑅, 𝐼} represents the 

placeholder for real and imaginary parts. 

Analogously, other system variables such as the reactive 

power 𝑄𝐺  of the PV buses, can be limited by limiting the 

calculated currents 𝐼𝐶
Ω + ∆(𝐼𝐶

Ω)
k
 at NR step k + 1 and then 

finding the new 𝑄𝐺  
  1 from inverse function (𝑓−1) of limited 

(𝐼𝐶
Ω + ∆(𝐼𝐶

Ω)k̅̅ ̅̅ ̅̅ ̅). 

B.  Homotopy Methods 

Limiting methods may fail to ensure convergence for certain 

ill-conditioned and large test systems when solved from an 

arbitrary set of initial guesses. To ensure convergence for these 

network models to the correct physical solutions independent 

of the choice of initial conditions, we propose the use of 

homotopy methods. Homotopy methods in past have been used 

to study the voltage collapse of a given network or to determine 

maximum available transfer capability [8]-[9]. They have also 

been researched for locating all solutions to a power flow 

problem [11], [30]. However, their usage for enabling 

convergence for hard to solve positive sequence and three-

phase power flow problems has been limited at best. Of the 

proposed methods for better convergence [5], [23], most have 

suffered from convergence to low voltage solutions or 

divergence. On the other hand, some of them have been 

developed for formulations that are not standard for both 

positive sequence as well as three-phase power flow [6]. 

Furthermore, none of the previously proposed homotopy 

methods are known to scale up to test systems that are of the 

scale of the European or the US grids and in general are not 

extendable to the three-phase power flow problem.  

In the homotopy approach, the original problem is replaced 

with a set of sub-problems that are sequentially solved. The set 

of sub-problems exhibit certain properties, namely, the first 

sub-problem has a trivial solution and each incrementally 

subsequent problem has a solution very close to the solution of 

the prior sub-problem. Mathematically this can be described via 

the following expression: 

ℋ(𝑥, 𝜆) = (1 − 𝜆)ℱ(𝑥) +   𝜆𝒢(𝑥)  (19) 

where 𝜆  [0, 1]. 

The method begins by replacing the original problem 

ℱ(𝑥) = 0 with ℋ(𝑥, 𝜆) = 0. The equation set 𝒢(𝑥) is a 

representation of the system that has a trivial solution. The 

homotopy factor 𝜆 has the value of 1 for the first sub-problem 

and therefore the initial solution is equal to trivial solution 

of 𝒢(𝑥). For the final sub-problem that corresponds to the 

original problem, the homotopy factor 𝜆 has the value of zero. 

To generate sequential sub-problems, the homotopy factor is 

dynamically decreased in small steps until it has reached the 

value of zero. 
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In this paper, we discuss two homotopy methods that are 

specifically developed for the power flow and three-phase 

power flow analyses: 

    1)  Tx Stepping 

We proposed the “Tx Stepping” method in [20] specifically 

for the power flow problem. In this section, the method is 

further extended for the three-phase power flow problem. 

          a)  General Approach  

In Tx stepping method, the series elements in the system 

(transmission lines, transformers etc.) are first “virtually” 

shorted to solve the initial problem that has a trivial solution.  

Specifically, a large conductance (≫ 𝐺𝑖𝑙) and a large 

susceptance (≫ 𝐵𝑖𝑙 ) are added in parallel to each transmission 

line and transformer model in the system. In case of three-phase 

power flow, a large self-impedance (≫ YΩΩ
𝑖𝑙 ) is added in parallel 

to each phase of the transmission line and transformer model. 

Furthermore, the shunts in the system, are open-circuited by 

modifying the original shunt conductance and susceptance 

values. Importantly, the solution to this initial problem results 

in high system voltages (magnitudes), as they are essentially 

driven by the slack bus complex voltages and the PV bus 

voltage magnitudes due to the low voltage drops in the lines and 

transformers (as expected with virtually shorted systems). 

Similarly, the solution for the bus voltage angles will lie within 

an -small radius around the slack bus angle. Subsequently, 

like other continuation methods, the formulated system 

problem is then gradually relaxed to represent the original 

system by taking small increment steps of the homotopy factor 

(𝜆) until convergence to the solution of the original problem is 

achieved.  Mathematically, the line and transformer 

impedances during homotopy for the power flow is expressed 

by: 

𝑖𝑙 ∈  {𝒯𝑋 , 𝑥𝑓𝑚𝑟𝑠} ∶ 𝐺̂𝑖𝑙 + 𝑗𝐵̂𝑖𝑙 = (𝐺𝑖𝑙 + 𝑗𝐵𝑖𝑙)(1 + 𝜆𝛾) (20) 

and for the three-phase problem: 

[

𝑌̂𝑎𝑎
𝑖𝑙 𝑌̂𝑎𝑏

𝑖𝑙 𝑌̂𝑎𝑐
𝑖𝑙

𝑌̂𝑏𝑎
𝑖𝑙 𝑌̂𝑏𝑏

𝑖𝑙 𝑌̂𝑏𝑐
𝑖𝑙

𝑌̂𝑐𝑎
𝑖𝑙 𝑌̂𝑐𝑏

𝑖𝑙 𝑌̂𝑐𝑐
𝑖𝑙

] =  [

Y𝑎𝑎
𝑖𝑙 (1 + 𝛾𝜆) Y𝑎𝑏

𝑖𝑙 Y𝑎𝑐
𝑖𝑙

Y𝑏𝑎
𝑖𝑙 Y𝑏𝑏

𝑖𝑙 (1 + 𝛾𝜆) Y𝑏𝑐
𝑖𝑙

Y𝑐𝑎
𝑖𝑙 Y𝑐𝑏

𝑖𝑙 Y𝑐𝑐
𝑖𝑙 (1 + 𝛾𝜆)

] (21) 

where, 𝐺𝑖𝑙 ,  𝐵𝑖𝑙 , and 𝑌ΩΩ
𝑖𝑙  are the original system impedances 

and 𝐺̂𝑖𝑙 , 𝐵̂𝑖𝑙 , and 𝑌̂ΩΩ
𝑖𝑙

 are the system impedances used while 

iterating from the trivial problem to the original problem. The 

parameter 𝛾 is used as a scaling factor for the conductances and 

susceptances.  If the homotopy factor (𝜆) takes the value one, 

the system has a trivial solution and if its takes the value zero, 

the original system is represented.   

Along with ensuring convergence for a problem, Tx stepping 

avoids the undesirable low voltage solutions for the positive 

sequence power flow and three-phase power flow problem 

since the initial problem results in a solution with high system 

voltages, and each subsequent step of the homotopy approach 

continues and deviates ever so slightly from this initial solution, 

thereby guaranteeing convergence to the high voltage solution 

for the original problem. 

          b)  Handling of Transformer Phase Shifters and Taps 

To “virtually short” a power system, we must also account 

for transformer taps 𝑡𝑟Ω and phase shifting angles 𝛩Ω. In a 

“virtually” shorted condition, all the nodes in the system must 

have complex voltages that are near the slack bus or PV bus 

complex voltages, which can be intuitively defined by a small 

epsilon norm ball around these voltages. Therefore, to achieve 

the following form, we must modify the transformer taps and 

phase shifter angles such that at  𝜆 = 1, their turns ratios and 

phase shift angles correspond to a magnitude of 1 pu and 0°, 
respectively. Subsequently, the homotopy factor 𝜆 is varied 

such that the original problem is solved with original 

transformer tap and phase shifter settings. This can be 

mathematically expressed as follows: 

𝑖 ∈  𝑥𝑓𝑚𝑟𝑠 ∶ 𝑡𝑟̂𝑖
𝛺 = 𝑡𝑟𝑖

𝛺 + 𝜆(1 − 𝑡𝑟𝑖
𝛺) (22) 

𝑖 ∈  𝑥𝑓𝑚𝑟𝑠 ∶ 𝛩̂𝑖
𝛺 = 𝛩𝑖

𝛺 − 𝜆𝛩𝑖
𝛺  (23) 

          c)  Handling of Voltage Control for Remote Buses 

To achieve a trivial solution during the first step of Tx 

stepping it is essential that we also handle remote voltage 

control appropriately. Remote voltage control refers to a device 

on node 𝒪 in the system controlling the voltage of another node 

𝒲 in the system. This behavior is highly non-linear and if not 

handled correctly can result in divergence or convergence to 

low voltage solution. Existing commercial tools for power flow 

and three-phase power flow analyses have difficulties dealing 

with this problem and suffer from lack of robust convergence 

when modeling remote voltage control in general. With Tx 

stepping we can handle this problem efficiently and effectively. 

We first incorporate a “virtually short path” between the 

controlling node (𝒪) and the controlled node (𝒲) at  𝜆 = 1, 

such that the device at the controlling node can easily supply 

the current needed for node 𝒲 to control its voltage. Then 

following the homotopy progression, we gradually relax the 

system such that additional line connecting the controlling node 

(𝒪) and controlled node (𝒲) is open at 𝜆 = 0. 

          d)  Implementation of Tx Stepping in Equivalent Circuit 

Formulation 

Unlike traditional implementations of homotopy methods, in 

equivalent circuit formulation we do not directly modify the 

non-linear set of mathematical equations, but instead embed a 

homotopy factor in each of the equivalent circuit models for the 

power grid components. In doing so we allow for incorporation 

of any power system equipment into the Tx stepping approach 

within the equivalent circuit formulation framework, without 

loss of generality. Furthermore, we ensure, that the physics of 

the system is preserved while modifying it for the homotopy 

method. Fig. 5 demonstrates how the homotopy factor is 

embedded into the equivalent circuit of the transformer. 

 
Figure 5: Homotopy factor embedded in transformer equivalent circuit. 

    2)  Dynamic Power Stepping 

Another homotopy technique that can ensure robust 

convergence for systems that have a low percentage of constant 

voltage nodes in the system is the dynamic power stepping 

method. Existing distribution systems tend to belong to these 

types of systems and therefore, dynamic power stepping can be 

applied to robustly obtain the steady-solution of the distribution 

grid by solving the three-phase power flow problem. This 

method has been previously described for the positive-sequence 
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power flow problem in [19] and is analogous to the source 

stepping and gmin stepping approaches in standard circuit 

simulation solvers. 

In the power stepping method, the system loads and 

generation are scaled back by a factor of  𝛽 until the 

convergence is achieved. If these loads and generations are 

scaled down all the way to zero, then the constraints for the PQ 

buses in the system result in linear network constraints. 

Similarly, current source non-linearities of the PV buses that 

are due to the constant real power are also eliminated. 

Therefore, by applying the power stepping factor, the non-

linearities in the system are greatly eased and convergence is 

easily achieved. Upon convergence, the factor is gradually 

scaled back up to unity to solve the original problem. In this 

method, as in all continuation methods, the solution from the 

prior step is used as the initial condition for the next step. The 

mathematical representation of dynamic power stepping for the 

three-phase power flow and positive sequence power flow 

problem is as follows: 

𝐺 ∈  𝑃𝑉: 𝑃̂𝐺
Ω = 𝛽𝑃𝐺

Ω (24) 

𝐿 ∈  𝑃𝑄: 𝑃̂𝐿
Ω = 𝛽𝑃𝐿

Ω 𝑎𝑛𝑑 𝑄̂𝐿
Ω = 𝛽𝑄𝐿

Ω (25) 

where, PQ are all load nodes and PV are all generator nodes. 

V.  POWER FLOW AND THREE-PHASE POWER FLOW 

ALGORITHM 

 
Algorithm 1: Simulation algorithm for Positive Sequence and Three-Phase 

Power Flow Solver 

Algorithm 1 shows the recipe for the solving the positive-

sequence as well as three-phase power flow problem in 

equivalent circuit approach with the use of circuit simulation 

methods. In this framework, the solver starts with building the 

system models based on the input file supplied. Linear models 

(𝑌𝐿 , 𝐽𝐿) are then stamped in the Jacobian matrix. Input state 

variables and other continuation parameters (𝑥0, 𝛿, 𝜁, 𝜆) are then 

initialized. Non-linear models are then stamped (𝑌𝑁𝐿 , 𝐽𝑁𝐿) and 

NR is applied with limiting methods to calculate the next iterate 

for voltages and generator reactive powers (𝑋̂  1). 
Continuation and limiting parameters are then dynamically 

updated and homotopy models (𝑌𝐻 , 𝐽𝐻) are stamped or re-

stamped if required to ensure convergence. Upon convergence 

of inner loop generator limits, switched shunts and transformer 

taps are adjusted and inner loop is repeated until final solution 

is achieved. 

VI.  RESULTS 

Example cases were simulated in our prototype solver 

SUGAR (Simulation with Unified Grid Analyses and 

Renewables) to demonstrate that the equivalent circuit 

approach along with circuit simulation techniques facilitates a 

robust framework for positive sequence power flow and the 

three-phase power flow analyses. The first set of results 

compare the solution of contingency analyses for two hard to 

solve cases with and without the use of circuit simulation 

methods to demonstrate the efficacy for these methods. All the 

further results compare the results of SUGAR (with circuit 

simulation methods) with other industry tools. The example 

cases for positive sequence power flow analyses include known 

ill-conditioned test cases and large network models that 

represent different operating and loading conditions for the 

eastern interconnection network of the US grid. For the three-

phase power flow analysis, example cases include a set of 

standard distribution taxonomy cases [29], high density urban 

test cases [31], and a meshed transmission grid test case that 

was modified from a positive sequence to a three-phase 

network model. The results that follow demonstrate that the 

proposed framework along with the use of circuit simulation 

methods can ensure convergence to a correct physical solution 

for all the power flow and three-phase power flow cases, 

independent of the choice of the initial guess and thus 

overcomes the challenges faced by existing formulations. 

A.  Circuit Simulation Methods  

The purpose of following set of results is to demonstrate the 

robustness of the solver that is enabled due to the use of circuit 

simulation methods. To show this, contingencies were 

simulated on two (2) hard to solve test-cases that represent a 

real network for the subset of the US power grid. The base case 

for both simulations is first solved via Tx-stepping method and 

then used as an initial condition for the set of contingencies. 

The contingencies in the contingency set represent the loss of 

largest 10% of online generators and highest capacity lines and 

transformers dropped one at a time.  
TABLE 1: COMPARISON OF SUGAR WITH AND WITHOUT CIRCUIT 

SIMULATION TECHNIQUES 

Case 

Id 

# 

Bus 

# 

Total 

Cases 

SUGAR w/o Circuit 

Simulation Methods 

SUGAR with Circuit 

Simulation Methods 

Converge 
Diverge 

/Infeasible 
Converge 

Diverge 

/Infeasible 

Case 
1 

5944 754 735 19 750 4 

Case 

2 
7029 801 706 95 793 8 

The results in the Table 1 confirm that the circuit simulation 

methods when applied to equivalent circuit formulation can 

significantly increase the robustness of the power flow solver.  
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B.  Positive Sequence Power Flow Results 

    1)  Ill-Conditioned and Large Test cases 

A convergence sweep was run on the ill-conditioned 13659 

bus PEGASE test case using the SUGAR solver and a standard 

commercial tool and their results were compared. Fig. 6 shows 

that SUGAR was able to robustly converge to the correct 

physical solution independent of the choice of the initial 

conditions, whereas the standard tool was highly sensitive to 

the choice of the initial guess and could converge to the correct 

physical solution only from a few samples for the initial guess. 

 
Figure 6: Convergence sweep comparison for 13659 node PEGASE testcase 

between SUGAR and Standard tool. Red indicates divergence and green 

indicates convergence 

A similar convergence sweep was performed for larger test 

cases (> 75k+ nodes) that represent different loading and 

operating scenarios for eastern interconnection of the US grid. 

Simulations were performed on three different test cases for 15 

different initial conditions each. Results are shown in Table 2. 

The set of initial conditions for all buses were identical and 

were uniformly sampled from: 

𝑉𝑎𝑛𝑔  ∈  [−40, 40] , 𝑉𝑚𝑎𝑔  ∈  [0.9, 1.1]. (26) 

TABLE 2: CONVERGENCE PERFORMANCE FOR LARGE EASTERN 

INTERCONNECTION TEST CASES 

Case 

Name 
# Nodes 

Standard Tool SUGAR 

# 

Converge 

# 

Diverge 

# 

Converge 

# 

Diverge 

Case 1 80778 0 15 15 0 

Case 2 76228 0 15 15 0 

Case 3 81904 0 15 15 0 

For the larger eastern interconnection test cases, the runtime 

per iteration is less than 0.4 seconds and is comparable to other 

simulation tools out in the market. The total computation time 

in general is dependent on the choice of initial conditions. A 

sufficiently close initial condition may result in convergence 

within 7 iterations whereas a totally random set of initial 

guesses may take up to 100 iterations with Tx stepping method. 

    2)  Contingency Analysis 

In the next set of results, we performed a set of contingency 

analyses with SUGAR and a standard commercial tool for two 

test cases that represent different network configuration of the 

eastern interconnection of the US grid. The initial guess for 

solving the contingency cases was chosen to be the operating 

point prior to the contingency. The set of contingencies in the 

experiment includes loss of generation (ℒ𝐺) and loss of 

branches (ℒ𝐵). The results are summarized in Table 3 and 

highlight the need for continuation methods to solve such 

problems robustly. 

TABLE 3: COMPARISON OF CONTINGENCIES OF LARGE TEST CASES 

Case # Nodes Contingency* Standard Tool SUGAR 

Case 1 76228 
2ℒ𝐺 Diverge Converge 

2ℒ𝐺 + 2ℒ𝐵 Diverge Converge 

Case 2 78201 
2ℒ𝐺 Diverge Converge 

2ℒ𝐺 + 2ℒ𝐵 Diverge Converge 

*The number in front of ℒ𝐺  and ℒ𝐵  represents the equipment outage count. (For 
e.g. 2ℒ𝐺  represents that two generators were lost during this contingency). 

C.  Three-Phase Power Flow Results 

    1)  Taxonomical Test Cases 

Table 4 documents the results obtained from SUGAR three-

phase solver for standard taxonomical cases and three large 

meshed test cases. The standard taxonomical cases include both 

balanced and unbalanced three-phase test cases. The first two 

meshed test cases are 342-Node Low Voltage Network Test 

Systems [31] that represent high density urban meshed low 

voltage networks. The third meshed test system is a high 

voltage 9241 node PEGASE transmission system that was 

extended to a balanced three-phase model. All these cases were 

simulated in SUGAR three-phase solver to validate its accuracy 

by comparing the obtained results against a standard 

distribution power flow tool GridLAB-D. Slight differences 

(less than 1e-2) in the results were observed for cases between 

SUGAR and GridLAB-D and are due to default values used for 

unspecified parameters (e.g. neutral conductor resistance) in 

GridLAB-D.  

TABLE 4: SUGAR THREE-PHASE RESULTS FOR TAXONOMICAL CASES 

Cases #Nodes 
Iter. 

Count 

Deviation from GridLAB-D 

Max. ΔVmag 

[pu] 

Max. ΔVang 

[°] 

R1-12.47-1 2455 5 8.73E-04 9.94E-03 

R2-12.47-3 2311 5 6.56E-04 1.32E-02 

R3-12.47-3 7096 5 1.94E-03 3.89E-02 

R4-12.47-1 2157 5 6.81E-04 9.61E-03 

R5-12.47-5 2216 5 5.44E-05 4.20E-03 

NetworkModel 1 1420 3 3.38E-03 2.14E-03 

NetworkModel 2 1420 3 3.83E-03 6.00E-03 

case9241pegase* 12528 5 NA# NA# 
* 9241 bus PEGASE transmission test case was extended to three-phase model 

#The following case did not run in GridLAB-D 

    2)  Ill-Conditioned Test Cases 

To solve certain hard to solve ill-conditioned three-phase 

test cases, we made use of homotopy methods. To demonstrate 

one such example, we extended the standard 145 bus 

transmission system model into a balanced three-phase network 

model.  

 
Figure 7: Convergence of 145 bus test case for three-phase power flow with 
(bottom) and without (top) power stepping. For the power stepping case, the 

green dotted line represents the change in continuation factor λ 

Fig. 7 plots the convergence results for this test case with and 

without the use of dynamic power stepping. Without the use of 
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dynamic power stepping, the test system did not converge 

within maximum number of allowable iterations; however, with 

the use of dynamic power stepping, the system robustly 

converged to correct physical solution. 

VII.  CONCLUSIONS 

In this paper, we have demonstrated that the equivalent 

circuit approach with the use of novel circuit simulation 

methods can robustly solve for the steady-state solution of the 

transmission and distribution grid without loss of generality. 

This proposed formulation and the analogous circuit simulation 

methods can be generically applied to both the positive 

sequence power flow problem and the three-phase power flow 

problem. Importantly, our approach toward steady-state 

analyses of transmission and distribution grid ensures robust 

convergence to correct physical solutions, and in doing so 

enables robust contingency analyses, statistical analyses, and 

security constrained optimal power flow analyses. Furthermore, 

the proposed generic framework for transmission and 

distribution grid analyses can be extended for joint simulation 

of transmission and distribution circuits without loss of 

generality. 
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