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Abstract—The utility of domain-specific knowledge for 

modeling, simulation, and optimization has been demonstrated for 
various research problem domains, including power systems. The 
concept of Equivalent Circuit Programming was previously 
developed and facilitated for robust, efficient, and scalable 
solution of network simulation and optimization problems. This 
paper extends the theoretical foundation of Equivalent Circuit 
Programming to enable the fusion of optimization theory and 
algorithms with the numerical methods that utilize the domain-
specific knowledge of power flow models. The generality, 
scalability, and numerical robustness of the resulting framework 
are demonstrated on realistic AC power flow (ACPF) models of up 
to 70k buses with proper enforcement of industry-required 
operational and security constraints.  

Index Terms — AC power flow, AC optimal power flow, 
contingency analysis, Equivalent Circuit Programming, nonlinear 
optimization, security constrained OPF, SUGAR. 

I.  NUMERICAL METHODS TAUGHT BY THE FIRST PRINCIPLES  
ptimal decision making represents a major component of 
everyday life and can be found everywhere, especially in 

emerging technologies increasingly dependent on Machine 
Learning algorithms and Artificial Intelligence [1]-[2]. The 
process of efficiently, accurately, and robustly obtaining these 
optimal decisions, however, can be extremely challenging since 
the closed form analytical solutions usually do not exist [1]. 
Therefore, developing numerical methods to accurately 
determine optimal decisions has become one of the most 
prominent problems since the early days of research in 
operations science and mathematical optimizations.  

To some extent, most of the developed numerical algorithms 
[1]-[3] mimic and utilize the knowledge of natural optimization 
processes that continuously occur in the world around us. The 
gradient based methods [1] use the idea that the fastest way to 
go down the hill, i.e., reach an optimal solution, is to take the 
steepest descent. Furthermore, metaheuristics such as the 
Simulated Annealing algorithm [4]-[5] mimic the natural 
processes that are found in the heating and controlled cooling 
in metallurgy, while the Evolutionary algorithms (EA) [4],[6] 
use the idea of biological evolution and survival of the fittest as 
a base for finding the global optimal solution of a mathematical 
optimization problem.  

Interestingly, as it is the case in natural optimization 
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processes where the “solution methodology” depends on a law 
of physics that governs the process, the fact that there doesn’t 
exist an algorithm that can efficiently work for all of the 
mathematical optimization problems is demonstrated by so-
called “No Free Lunch” (NFL) theorems in [7]. By examining 
the connection between the effective algorithms and problems 
they are solving, the authors from [7] proved that if no domain-
specific knowledge of a problem is considered within the 
algorithm, all the algorithms should perform the same on 
average once applied to the complete spectrum of problems. 
Therefore, it becomes apparent that to obtain a more efficient 
and numerically robust methodology for solving a particular 
class of optimization problems, all the known domain specific 
information must be taken into account, particularly when 
dealing with the optimization of physical systems. 

Long before the formal proof and introduction of NFL 
theorems, utilizing the domain specific knowledge was already 
shown to facilitate powerful theorem proofs and solution 
methodologies. Namely, one of the main theorems that defines 
the conservation of energy within a network, Tellegen’s 
Theorem [8], was proven by the Kirchhoff Current and Voltage 
Laws (KCL and KVL). Moreover, the electronic circuit 
simulator SPICE [9] and its many derivatives [10]-[12] have 
utilized domain-specific knowledge of transistors and other 
circuit elements to enable the simulation of the highly nonlinear 
circuit problems with billions of variables [13].  

Inspired by the circuit theoretic approach to solving 
simulation problems and backed by NFL theorems, the 
Equivalent Circuit Programming (ECP) [14] framework was 
introduced and shown to facilitate robust, scalable, and efficient 
numerical solution processes of network analyses. It was shown 
that the optimality conditions of a network optimization 
problem can be fully and accurately represented in terms of 
equivalent circuit models and respective theorems [11],[15]. 
This perspective on the problem optimality conditions 
facilitated embedding of domain-specific knowledge directly 
within the optimization theory and corresponding state-of-the-
art numerical methods [1],[3],[16]-[18] to develop a set of novel 
algorithms that are infused by network physics. Importantly, the 
complete consideration of the domain-specific knowledge 
enabled the merging of decades of advanced research in the 
circuit simulation community together with the advances in 
state-of-the-art optimization techniques and algorithms. This, 
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as NFL theorems proved, demonstrated that the network physics 
does not necessarily make the simulation and optimization 
problems harder, but on the contrary, can help in achieving 
more efficient, and scalable framework, if considered and 
utilized within the state-of-the-art optimization theory and 
algorithms. 

As a cornerstone of economic health and an essential service 
in modern societies [19], an electrical power grid is governed 
by physical conservation laws (KCL and KVL) that define the 
relationship between the currents and voltages within the 
system. Recently, power grid steady-state analyses [20]-[23]  
have included an equivalent circuit formulation for representing 
the power flow problem in terms of current, voltage and 
admittance state variables [24]. It was shown that this approach 
enables more stable and robust numerical convergence 
properties [23]-[26] once compared to traditionally used 
formulations [27]-[29]. The equivalent circuit formalism set a 
foundation for incorporation of power flow models within the 
novel ECP framework presented in this paper. 
 To motivate the extension and application of Equivalent 
Circuit Programming theory and algorithms, this paper builds 
on the concept of physics-inspired numerical methods to 
address impediments and combine the advantages of traditional 
numerical algorithms, and the recently introduced circuit 
simulation approach for solving a wide scope of AC power flow 
problems. To that end, the major contributions of this paper are:  
i. Application of ECP theory to include an AC power flow 

model and introduce a novel perspective on representing 
and analyzing its set of optimality conditions and duality 
theory in terms of conservation of energy within the system.  

ii. Development of a set of ECP algorithms that builds on the 
ECP theory to combine the advantages of both optimization 
and physics-based circuit simulation approaches by 
embedding the power system domain-specific knowledge 
within the generic optimization techniques and algorithms.  

The efficacy, robustness, and scalability that can be achieved 
within the introduced framework is demonstrated by analyzing 
a set of realistic power flow models of up to 70k buses with 
industry required operational constraints enforced. The 
considered analyses include, but are not limited to, realistic AC 
power flow (ACPF) simulations, as well as AC optimal power 
flow (OPF) and security constrained AC-OPF analyses. 

II.  FORMULATING AND SOLVING AN AC POWER FLOW MODEL 
Characterizing and analyzing a power grid steady-state 

response in terms of power-mismatch formulation and phasor 
voltage state variables [28] has been widely accepted as a 
standard, particularly for transmission level grid analyses. 
However, as any other electrical circuit, an electrical power 
system is governed by physical conservation laws that are 
naturally defined in terms of current and voltage state variables. 
Notably, as found in the publications dating back to 1940s and 
1950s [30]-[32], the original formulations for analyzing the grid 
response utilized these classical state variables, and was the first 
formulation implemented on a digital computer by Ward and 
Hale in 1956 [31]. These initial current/voltage-based 
formulations, however, suffered from serious drawbacks in 

efficiency, accuracy, and scalability [33]-[35], hence leading 
power system analyses to the power mismatch formulation for 
characterizing the network steady-state response. 

Recent advances in power flow modeling and analysis [22], 
however, have demonstrated that the ACPF problem can be 
modeled and solved as a traditional circuit simulation problem 
represented in terms of KCL and KVL equations [20]. The 
formalism introduced by the equivalent circuit representation of 
an ACPF problem enabled the application of circuit simulation 
techniques and homotopy methods to improve the simulation 
robustness and scalability [23]-[25].  

A.  AC Power Flow equivalent circuit model 
Consider a power system whose steady-state response, and 

hence its power flow solution, is characterized in terms of 
fundamental frequency phasor voltages and currents (𝑉"! =
𝑉",! + 𝑗𝑉$,! and 𝐼'! = 𝐼",! + 𝑗𝐼$,!), with the relationships between 
a set of generators 𝒢% and load demands 𝒟%, interconnected by 
a set of transmission network elements, 𝒯&. Next we outline 
how the equivalent circuit modeling of the power flow problem 
can overcome the challenges of current-voltage based 
formulations [30]-[31],[35]. 

1. Linear circuit elements: Bus admittance matrix 
For the “Power-Mismatch” (P/Q) formulations [28], the 

network elements, such as the ones presented in Figure 1, 
correspond to the main source of inherent nonlinearities in the 
power flow bus admittance matrix (𝑌%'(). In contrast, for the 
“Current-Mismatch” (I/V) formulations, the admittance matrix 
corresponds to linear constraints relating phasor currents and 
voltages, as governed by Ohm’s Law. The main source of 
nonlinearities now shifts towards enforcing the generator/load 
power-based operational constraints.  

 
Figure 1. Example of naturally linear power flow impedance models. 

2. Modeling constant power elements: GB bus model  
Characterizing the two most common transmission system 

components, PV and PQ power flow models (Figure 2), in 
terms of phasor current and voltage state variables represents 
the main impediment [32]-[33] for the original “Current-
Voltage” formulations in terms of accuracy [31]-[32] and 
robustness [33].  

 
Figure 2. Power models in an ACPF problem. Constant PQ model 
(a) absorbs the real and reactive powers (𝑃! and 𝑄!) from the 

network. On the other side, in addition to constant real power (𝑃") 
supplied to the network, the PV model (b), adjusts the reactive power 

(𝑄") to maintain the voltage magnitude |𝑉#|of a system bus. 
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To circumvent the challenge of relating the phasor 
current/voltage states with the power-based operational 
constraints, the equivalent circuit modeling approach 
introduces an additional set of admittance state variables [14], 
[24]. Representing PQ and PV buses in terms of generalized GB 
bus model (Figure 3), power-mismatch constraints are enforced 
by solving for the values of admittance variables that ensure 
that the power injections to the network, modeled by the bus 
admittance matrix, match the pre-specified power constraints, 
as given for 𝑖)* bus in (3)-(4). Most importantly, the PQ-based 
ACPF models are now included within a set of current 
mismatch equations (1)-(2) in terms of unknown admittances 
that constrain the relationship between phasor currents and 
voltages, while corresponding to nonlinearities within the 
formulation: 

𝑉",!:			𝐺!𝑉",! − 𝐵!𝑉$,! + Re4𝑌%'(𝑽67! = 0 (1) 
𝑉$,!:			𝐺!𝑉$,! + 𝐵!𝑉",! + Im4𝑌%'(𝑽67! = 0 (2) 

𝐺!:			𝐺!;𝑉",!+ + 𝑉$,!+ < = =𝑃,,-

|𝒟!|

-01

− = 𝑃2,3

|𝒢!|

301

 (3) 

𝐵!:			𝐵!;𝑉",!+ + 𝑉$,!+ < − 𝑄2,! = −=𝑄,,-

|𝒟!|

-01

 (4) 

In addition to ensuring the hold of power mismatch 
conditions on a set of KCL equations (1)-(2), the introduction 
of admittance state variables and corresponding power-
mismatch equations (3)-(4) provides an additional degree of 
freedom for enforcing other operational constraints. Namely, 
constraints given in terms of system currents and voltages 
(thermal current limits, switch shunt control, etc.) more 
naturally fit, and hence can be more readily enforced, within the 
set of KCL equations (1)-(2). On the other side, operational 
constraints and control defined in terms of real and reactive 
powers can be included within a set of newly added GB 
equations (3)-(4). For instance, the voltage regulation (VR) 
characteristics of a PV model, given in Figure 4, is enabled by 
introducing an additional reactive power variable, 𝑄2,! to the 
respective equation as shown in (4), for which the additional 
bus voltage control constraints are enforced as: 

𝑄2,!:			𝑉",!+ + 𝑉$,!+ − Δ𝑣5 + Δ𝑣− = |𝑉6|+ (5) 
Δ𝑣5:			Δ𝑣5(𝑄78& − 𝑄2) → 05 
Δ𝑣9:			Δ𝑣9(𝑄2 − 𝑄7$:) → 05 (6) 

 
Figure 3. GB bus representation of a constant power model. 

 Finally, the complete set of circuit equations 𝐹;-) and state 
variables 𝒙 represented per bus as in (1)-(6) are defined as in 
(7), and numerically solved to obtain an ACPF solution. 

𝐹;-)(𝒙) = 𝟎 (7) 

 
Figure 4. Disjunctive characteristics of PV voltage regulation. If 

reactive power 𝑄",% doesn’t approach operational limits (point 2) the 
voltage is maintained at a set point (|𝑉&|), while whenever one of the 
limits is reached (point 1), the regulation is not maintained, and the 
controlled setpoint is relaxed in directions given by 𝛥𝑣' and 𝛥𝑣(. 

3. Numerical robustness: A circuit simulation problem 
Robustness and efficacy of numerical methods employed for 

solving a system of nonlinear power flow equations are 
challenges for both traditional “Power-Mismatch” [27] and 
“Current-Mismatch” [31],[35] formulations. Consider a 
Newton Raphson (NR) method that utilizes the first order 
Taylor expansion for iterative improvements, Δ𝒙 ∈ ℝ|<"#$(𝒙)|, 
from the initial starting point toward a solution of the nonlinear 
system (7), as shown in Figure 5. In relating a particular ACPF 
problem reformulation with the convergence properties of NR 
method, the lessons learned from deeply developed circuit 
simulation methods [9]-[12] indicate that the control of the NR-
step size is the difference between convergence and divergence 
of the iterative process. 

 
Figure 5. NR process of solving a circuit simulation problem. 

The main difference between a generalized NR method and 
a circuit simulation-based formulation is the utilization of 
domain-specific knowledge to control the iterative process. 
Contrary to the no-step (𝑻 = 1) control, or a constant NR-step 
damping (𝑻 ∈ ℝ1) employed in generic numerical toolboxes 
[1],[3], circuit simulation techniques limit each term of the NR-
step (𝑻 ∈ ℝ|@A|) based on the understanding of equivalent 
circuit model physical characteristics. Most importantly, even 
though this kind of vectorized NR step damping doesn’t ensure 
that the residual of the problem is decreased at every iteration, 
the approximated “trust region” techniques based on the 
problem “physics” have been shown to work quite effectively, 
particularly once combined with homotopy methods [25]-[26]. 

B.  Solving an ACPF constrained optimization problem  
With the introduced equivalent circuit representation of an 

ACPF model, we next focus on the framework for optimal 
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building (design) of its set-points and control parameters. 
Therefore, consider a generic representation of an ACPF 
constrained optimization problem with a continuously 
differentiable objective function ℱ(𝒙) and a set 𝐶B(𝒙) of power 
flow operational 𝐹;-)(𝒙) constraints and limits ℎ(𝒙): 

min
𝒙∈D%

ℱ(𝒙) 

𝐶B = {𝒙|	𝐹;-)(𝒙) = 0, ℎ(𝒙) < 0} 
(8) 

To enforce the domain of a given set 𝐶B onto the minimization 
objective from (8), the objective function is augmented with a 
weighted sum of constraints within a Lagrangian function: 

ℒ(𝒙, 𝝀, 𝝁) = ℱ(𝒙) + 𝝀E𝐹;-)(𝒙) + 𝝁Eℎ(𝒙) (9) 

where the vectors 𝝀 ∈ ℝ|<"#$(𝒙)|  and 𝝁 ∈ ℝ|*(𝒙)| represent the 
“optimal weights” or dual variables related to power flow 
operational constraints and limits respectively. 

If it exists, an operationally constrained power flow solution 
that minimizes the Lagrangian function in (9), and is given by 
a stationary point 𝒛 = [𝒙, 𝝀, 𝝁]𝑻,	can be obtained from a set of 
dual, primal and complementarity conditions derived from the 
first order differentiation of the Lagrangian function as:  

𝜃(𝒛) = 	]
∇Aℱ(𝒙) + ∇A𝐹;-)(𝒙)E𝝀 + ∇Aℎ(𝒙)𝑻𝝁

𝐹;-)(𝒙)	
𝝁 ∘ ℎ(𝒙) + 𝜺

= 𝟎 (10) 

with 𝜀 → 05 to ensure 𝜃(𝒛) differentiability, and under the 
consideration of primal (11) and dual (12) feasibility: 

𝝁 ≽ 𝟎 (11) 
ℎ(𝒙) ≼ 𝟎 (12) 

Like in the NR method defined in Figure 5, an operationally 
constrained power flow solution can be obtained by linearizing 
and iteratively solving the set of equations from (10), while 
controlling a NR-step Δ𝒛 and complementarity violation 
coefficient 𝜀 as presented in Algorithm 1.  Importantly, interior 
point methods (IPMs) are the most popular numerical methods 
for solving the aforementioned optimization. However, in 
contrast to solving a circuit simulation problem, IPMs utilize a 
constant NR-step damping (𝑇 = 𝑡GH) that ensures residual 
decrement (if feasible) at every iteration. Moreover, other 
versions of IPM mostly differ in the way of handling 𝜀 control 
[1]-[3],[16]-[18], while utilizing constant NR-step damping. 
 

Algorithm 1. Short-step (Primal-Dual) Interior Point Method (IPM). 
Given: feasible 𝒛𝟎, and tolerance 𝜖 > 0,	𝛼 ∈ (0,0.5) and 𝛽, 𝜎 ∈ (0,1) 
Repeat:  
1. Set 𝜀 = −𝜎ℎ:𝒙𝒌<

+𝝁𝒌 and Compute NR step Δ𝒛 
2. Apply a form of line search on ?𝜃:𝒛, + 𝑡-.Δ𝒛	<?/ 

a. Compute a constant,	𝑡-.012 that ensures dual feasibility:  

𝑡-.012 = 0.99min G1,min G−
𝜇%,

Δ𝜇%
|	Δ𝜇% < 0, ∀𝑖 ∈ [1, |𝜇|]NN 

b. Starting from 𝑡-. → 𝑡-.012 continue damping to ensure:  
ℎ:𝒙, + 𝑡-.𝚫𝒙< < 𝟎 

c. Solve line search [1] to satisfy a form of residual condition 
3. Update NR step: 𝒛,'3 = 𝒛, + 𝑡-.𝚫𝒛, and increase: 𝑘 → 𝑘 + 1 
Until: ?𝜃:𝒛𝒌'𝟏	<?/ ≤ 𝜖 and 𝜀 ≤ 𝜖 

It must be noted that the operationally constrained power 
flow solution can be called optimal only if the Second-Order 
necessary condition from (13) holds. That is, the Hessian of the 
Lagrangian function, ∇AA+ ℒ(∗) evaluated at that point must be 
positive-definite on a feasible step-size perturbation 𝝉, with 
𝑇&∗ 	representing the tangent linear sub-space at 𝒙∗[1]-[3]. 

𝝉E∇AA+ ℒ(𝒙∗, 𝝀∗, 𝝁∗)𝝉 > 0, ∀(𝝉 ≠ 𝟎) ∈ 𝑇&∗ (13) 

C.  Optimization vs circuit simulation approach 
Solving a nonlinear constrained optimization problem, such 

as optimizing an AC power flow model with consideration of 
the industry required operational constraints and control limits 
(8), can be a very challenging task that is prone to divergence, 
very slow convergence, or convergence to nonoptimal saddle 
points [1]. Moreover, when solved using commercial 
optimization toolboxes, the optimization problem relies on 
careful tuning of the solver parameters [1].  

From the perspective of NR step control, these challenges 
can be traced to a constant NR step damping parameter obtained 
as a solution to some form of a line search problem. Namely: 

1. The line search may not have a feasible solution due to the 
problem nonlinearities or bad initial starting point. Hence, 
only the increase of residual can allow for the future 
convergence of the iterative process.  

2. The introduction of complementarity constraints requires 
the additional step-size damping to ensure the primal and 
dual feasibility. This can cause scalability issues, since one 
step size can possibly saturate the whole solution vector.  

3. The unnecessary damping of certain variables can force the 
iteration process to remain stuck in a local area, thereby 
increasing the chances of converging to a local saddle 
point, as depicted in Figure 6. 

Conversely, circuit simulation algorithms employ the 
knowledge of the problem’s physical characteristics to limit NR 
step size, which means that each variable is treated and limited 
separately. While this may not necessarily decrease the residual 
at every iteration, it can be beneficial or problematic. If not 
limited properly, the convergence process can take a step from 
which it cannot recover, causing the future divergence. To this 
end, this paper focuses on merging the best from the two 
approaches and developing a set of techniques that can 
potentially improve scalability and efficiency by ensuring that 
the vectorized damping of a NR step also results in the optimal 
residual decrement at each iteration. 

 
Figure 6. Drawbacks of a single step limiting factor 𝛼. 

III.  EQUIVALENT CIRCUIT PROGRAMMING THEORY 
Equivalent Circuit Programming (ECP) was introduced [14] 

as an approach that is inspired by circuit simulation concepts 
and NFL (no free lunch) theorems.  ECP transforms the “art of 
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tuning” [1] nonlinear algorithms into a technology that utilizes 
the domain specific knowledge of network optimization 
problems to ensure the numerical efficacy and scalability. To 
specifically develop a set of physics-inspired numerical 
algorithms for ACPF analyses, this section provides a 
perspective on interpreting the duality theory and optimality 
conditions of an ACPF constrained problem in terms of 
conservation of energy within a system. 

A.  Necessary optimality conditions as a circuit model 

1. Primal problem (𝐹;-)(𝒙) = 𝟎) 
As the first component of the Necessary conditions from 

(10), the primal problem itself corresponds to a set of equations 
governing an equivalent circuit model (7). 

2. Dual problem (∇Aℱ(𝒙) + ∇A𝐹;-)(𝒙)E𝝀 + ∇Aℎ(𝒙)𝑻𝝁 = 𝟎) 
Different reformulations of a problem correspond to different 

duals [1]. Therefore, it is expected that following first principles 
to a physical system as an equivalent circuit, also maps to a 
network model in dual space. To that end, the ECP theory [14] 
generalizes the adjoint network concept previously used for 
noise analysis in Radiofrequency (RF) circuits [37]. 
Accordingly, the dual space mapping of elements defining 
ACPF models, presented in Table 1, is obtained by analyzing 
[14] the effect of admittance perturbations on the conservation 
of power within the network. 

Table 1: Mapping from an original to the adjoint network element. 
Original Network  Adjoint Network 

Independent current source → Open circuit 
Independent voltage source → Short circuit 

Capacitive/inductive impedance → Inductive/Capacitive impedance 
Voltage step-up/down transformer → Current step-down/up transformer 
Current step-up/down transformer → Voltage step-down/up transformer 

For instance, if an optimization constraint is given in terms 
of Ohm’s Law, which relates a current and voltage of an 
inductive impedance, its dual space equivalent is represented by 
the Ohm’s Law governing the current and voltage of a 
capacitive impedance. The adjoint current and voltage then 
uniquely correspond to the Lagrange multipliers of the 
respective optimization constraint.  With each of the equivalent 
circuit elements mapped to its respective adjoint (dual 
representation), the resulting set of adjoint circuit equations 
then corresponds to the dual problem contributions from a set 
of network constraints, 𝛻𝒙𝐹;-)(𝒙)E𝝀. When combined with the 
contributions from the optimization objective ∇𝒙ℱ(𝒙), and a set 
of enforced operational limits, ∇Aℎ(𝒙)𝑻𝝁, it results in a dual 
problem as given in (10). Our network representation of the 
ACPF dual problem will consider the adjoint network model for 
the remaining discussions and contributions. 

a. Adjoint network model for representing the First order 
ACPF sensitivity, 𝛻𝒙𝐹;-)(𝒙)E𝝀. 

To obtain the physical system representation of a dual 
problem from (10), consider a set of equivalent circuit models 
representing an ACPF problem as introduced in Section II-A. 
For a given set of models defined by the bus admittance matrix 
(Figure 1), the respective dual space representations are 
obtained by following the mappings from Table 1. Namely, any 

impedance is represented by its complex conjugate, while a 
voltage transformer maps to a current transformer with the 
inverse complex turns ratio, as shown in Figure 7. Similarly, the 
same rule follows for variable admittances introduced to 
enforce power constraints on the governing circuit equations. 

 
Figure 7. ACPF admittance models from Figure 1 in dual space. 

b. Active constraints and objective function gradient 
∇𝒙ℱ(𝒙), as excitation sources of the adjoint network 

The ECP theory in [14] showed that the excitation of the 
adjoint network corresponds to the first-order sensitivities of 
the problem objective, ∇𝒙ℱ(𝒙), and a set of active operational 
limits. Hence, an adjoint network characterizes the first-order 
sensitivities of original ACPF model and further “connects” 
them with the sensitivities of problem objective function, and 
an active set of operational limits. This results in a physical 
perspective and representation of the dual problem (10) in terms 
of the laws of conservation of energy within the adjoint (dual) 
system. It follows that an optimal solution candidate to the 
problem represents an operating point at which the power 
supplied by the dual excitation sources (objective sensitivities, 
active operational limits) matches the power absorbed by the 
adjoint network (ACPF sensitivities). 

3. Complementarity conditions (𝝁 ∘ ℎ(𝒙) = −𝜀) 
A physical intuition behind a set of complementarity 

conditions that can be utilized within ECP algorithms can be 
obtained by noting that the complementary “switch-like” 
characteristics resemble diodes in electronic circuit problems, 
as shown in Figure 8. Roughly speaking, after a threshold 
voltage point (diode thermal voltage, 𝑉)*) across a diode is 
reached, the conducting current (𝐼J) flows with exponential 
growth as a function of that voltage. Similarly, as the network 
state approaches its operational limit, a dual variable 𝜇 
“activates” and becomes nonzero. Therefore, inspired by the 
circuit simulation for handling diode nonlinearities, and in 
contrast to traditionally used IPMs, in ECP we propose to 
directly fix the value of the non-ideality factor 𝜀 to a preset 
small value ranging from 10-6 to 10-12 [14]. Hence, a set of ECP 
NR-step limiting techniques is developed for handling such 
nonlinear characteristics within the NR method.  

 
Figure 8. A diode circuit perspective for understanding and future 
handling the complementarity conditions within ECP algorithms. 
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B.  Passivity of adjoint (dual) network ensures optimality  
From the perspective of conservation of energy within a 

system, a solution to a set of necessary optimality conditions 
from (10) represents an operationally constrained ACPF 
solution for which the power supplied by the dual excitation 
sources (e.g., objective sensitivities) matches the power 
absorbed by the adjoint network. The ECP theory proves in [14] 
that such a point is said to be an optimal operating point if the 
adjoint network (dual problem) remains passive [36] around its 
operating point. Namely, a change in the total power absorbed 
by the adjoint network due to the small system perturbation is 
positive, i.e., there is no point at which the adjoint network 
starts to “generate power.” The passivity condition is a well-
known concept in circuit theory and is now utilized together 
with the physical representation of the necessary optimality 
conditions in building a set of novel ECP algorithms. 

IV.  EQUIVALENT CIRCUIT PROGRAMMING ALGORITHMS 
Besides the traditional approaches for solving an ACPF 

optimization problem, optimizing an ACPF model also 
corresponds to simulating a network and its additionally excited 
adjoint model, whose passivity at the operating point further 
guarantees its optimality. Building on this new perspective, and 
the advantages of traditional optimization techniques, this 
section introduces a set of novel techniques for NR step control. 
In referring to Figure 5 and Algorithm 1, methods for handling 
the NR step control are replaced by a set of new techniques 
presented in Algorithm 2. 
 

Algorithm 2. ECP approach for vectorized NR step limiting  
Input: network model of optimality conditions and NR step, 𝚫𝒛 
APPLY 

1. Diode limiting techniques 
• Static diode limiting (physics/optimization inspired) 

o  𝚫𝒛	 → 𝐓𝐒𝐃𝐋 ∘ 𝚫𝒛 
• Dynamic diode limiting (physics inspired)   

o 𝚫𝒛	 → 𝐓𝐃𝐃𝐋 ∘ 𝚫𝒛 
2. Optimal residual limiting (optimization inspired)  

IF:    ‖𝜃(𝒛- + 𝐓𝐎𝐑𝐋 ∘ 𝚫𝒛)‖++ ≈ ‖𝜃(𝒛-)‖++ ↛ 0  
• Variable filtering (physics inspired) GOTO: Step 2 
ELSE: 𝚫𝒛	 → 𝐓𝐎𝐑𝐋 ∘ 𝚫𝒛 

Output: Controlled NR-step 𝚫𝒛 

While diode limiting techniques ensure the primal (11) and 
dual (12) feasibility by handling the steepness of 
complementarity conditions, variable filtering can be derived 
via physics-inspired trust regions based on physical 
representation of (10). In contrast, optimal residual limiting 
enables the residual decrement at each iteration, thereby 
overcoming the impediments of traditional circuit simulation 
approaches. Notably, the introduced set of vectorized damping 
techniques considers and limits each variable within NR step 
separately, while at the same time decreases the problem 
residual. Most importantly, techniques presented in Algorithm 
2 are generic and applicable to other ACPF formulations within 
existing simulation and optimization frameworks. 

A.  Diode Limiting Techniques 
A set of ACPF operational limits, ℎ(𝒙), and respective 

complementarity conditions can be further defined in terms of 

upper and lower bounds (𝑿' and 𝑿,) on the state variables of 
equivalent circuit model as: 

ℎ(𝒙) = {𝒙|	𝑿, − 𝒙 ≤ 0, 𝒙 − 𝑿' ≤ 0} (14) 

𝝁 ∘ ℎ(𝒙) = 𝜅(𝝁, 𝒙) ≡ t𝝁𝑳 ∘
(𝑿, − 𝒙)

𝝁𝑼 ∘ (𝒙 − 𝑿')
u = −𝜺 (15) 

where 𝝁𝑳 and 𝝁𝑼 represent dual variables related to subsets of 
lower and upper operational limits respectively from (14). 

To ensure that consecutive NR-steps remain feasible and 
well controlled within the steep nonlinear complementarity 
curve (e.g. Figure 8), our proposed diode limiting technique 
combines concepts relating to the primal/dual feasibility step 
damping (this time per variable) from Algorithm 1, and circuit 
simulation diode damping approaches in [11]. We describe this 
new approach in the following subsection.  

1. Static Diode limiting technique  
Consider a state variable, 𝑥! bounded by its upper (𝑋',!) and 

lower (𝑋,,!) operational limits. Furthermore, let 𝜇%∈{',,},! 
correspond to the respective pair of dual variables, lower 
bounded by a feasibility condition given in terms of 𝜀-factor: 

𝜇%,! > 𝜇3!O,! =
𝜀

𝑋',! − 𝑋,,!
→ 05 (16) 

A pair of NR step damping factors (𝜏A,!,	𝜏%∈{',,},! ∈ [0,1]) that 
ensures the primal and dual NR step feasibility; i.e.  Δ�̅�! →
𝜏A,!Δ𝑥! and Δ�̅�%,! → 𝜏%,!Δ𝜇%,!, is then obtained as: 

𝜏A,! = min[1, 𝛼J<(Δ&] (17) 

𝜏%,! = ]min {1, 𝛼J<( |
𝜇3!O,!
Δ𝜇%,!

− ΔP}~ 		if	Δ𝜇%,! < 0

1																																					 else
 (18) 

with 𝛼J<( = 0.99, introduced to prevent numerical noise 
issues, while the damping ratios 𝛥& and 𝛥% are given by (19)-
(20). Moreover, additional to separately limiting each variable 
NR step, the purely circuit simulation approach often manually 
controls the value of 𝛼J<( as a tuning parameter to maintain 
conditioning of the iterative process. Hence, to remove the 
possible negative effects that parameter tuning may introduce, 
the second “diode” limiting ensures that the conditioning of 
iterative process becomes “controlled” by the problem itself. 

Δ& =

⎩
⎪
⎨

⎪
⎧𝑋',! − 𝑥!

-

Δ𝑥!
 if	 Δ𝑥! > 0

𝑋,,! − 𝑥!-

Δ𝑥!
	if	Δ𝑥! < 0

 (19) 

Δ% =
𝜇%,!-

Δ𝜇%,!
 (20) 

2. Dynamic Diode limiting technique 
For maintaining the convergence stability, Dynamical Diode 

limiting further damps (𝛿A,! , 𝛿%,! ∈ [0,1]) the feasible NR-steps 
to ensure that the complementarity residual converges 
concurrently with the reminder of the problem. This is achieved 
by controlling the rate of change of the complementarity 
function residuals between the consecutive NR iterations as: 
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𝜅;𝜇%,!- + 𝛿%,!Δ�̅�%,! , 𝑥!- + 𝛿A,!Δ�̅�!<
𝜅;𝜇%,!- , 𝑥!-<

≥ 1 − 𝜌 (21) 

with 𝜌 being a function of normalized residual 𝜒-, given by (22)  
and Figure 9 that dynamically controls the rate of change.  

𝜌 = 𝜌(𝜒-) = ]
log 𝜒-

�𝜒-
		if		𝜒- > 𝑒+

2𝑒91													else
 (22) 

𝜒- = max t𝑒
Q1
1R, 𝜅(𝑥R, 𝜇%R)91u

‖𝜃(𝒛-)‖++

‖𝜃(𝒛R)‖++
 (23) 

In referring to Figure 9, the smaller initial complementarity 
residual is, the smaller allowable initial decrement	 𝜌(𝜒R), 
indicating that the complementary variables are in the steep 
region and need to be damped more. Moreover, as the ‖𝜃(𝒛-)‖++ 
converges, the condition from (21) relaxes, thereby requiring 
less step damping towards the overall problem convergence. 

 
Figure 9. Dynamic damping function representing an amount of 

complementarity decrement as governed by the problem residuals.  

Next, consider the system of two conditions from (21) given 
for upper and lower (𝐵 ∈ {𝑈, 𝐿}) complementarity constraints. 
The residual dependent step limiting factors in Algorithm 3 is 
then computed from the obtained system of inequalities. 
 

Algorithm 3. Dynamic Diode limiting damping factors calculation 
Input: Δ�̅�% ,	Δ�̅�#,%	and damping ratios	Δ:#, Δ;#,	Δ<#	given in (24)-(26) 

IF  Δ�̅�% > 0:   IF  Δ�̅�=,% > 0: 𝛿=,% = 1 and 𝛿2,% = minZ1, Δ;=[ 
     ELSEIF Δ�̅�=,% < 0: 𝛿=,% = 𝛿2,% = min[1, Δ:=] 

THEN 𝛿!,% = min[1, Δ<!] 
ELSEIF Δ�̅�% < 0:  IF  Δ�̅�!,% > 0: 𝛿!,% = 1 and 𝛿2,% = minZ1, Δ;![ 

              ELSEIF Δ�̅�!,% < 0: 𝛿!,% = 𝛿2,% = min[1, Δ:!] 
THEN 𝛿=,% = min[1, Δ<=] 

Output: 𝛿2,% and	𝛿#∈{!,=},%	 

Δ&% =
Δ�& − Δ�% −�Δ�&+ + (2𝜌(𝜒-) − 1)2Δ�&Δ�% + Δ�%+

2  (24) 

ΔS% =
;𝜌(𝜒-)𝜇%- + Δ�̅�%,!<
;𝜇%- + Δ�̅�%,!<

Δ�& (25) 

ΔT% =
;𝜌(𝜒-)Δ�& − 𝛿𝑥,𝑖<
;Δ�& − 𝛿𝑥,𝑖<

Δ�% (26) 

where �̅�& and �̅�% represents the recomputed feasible damping 
ratios from (19)-(20). Finally, the updated feasible NR states 
further ensure the hold of (21) are obtained as: 

𝑥!-51 = 𝑥!- + 𝛿A,!𝜏A,!Δ𝑥! (27) 
𝜇%,!-51 = 𝜇%,!- + 𝛿%,!𝜏%,!Δ𝜇%! (28) 

B.  Optimal Residual Limiting: 3D-space search 
From the perspective of representing a set of optimality 

conditions (10) as a network model, a vector of primal and dual 
variables 𝒛 can be also seen based on its physical 
interpretability. Namely, 𝒛 = [𝒗, 𝒈, 𝒃]𝑻, where 𝒗 corresponds 
to primal and dual variables representing network voltages, 
while 𝒈 and 𝒃 include variables related to impedance, as well 
as the real and reactive power variables respectively. This new 
perspective is further utilized to rethink a generic line search 
problem and transform it into a 3D space search problem, 

min
U,V,W∈[R,1]

‖𝜃(𝒗- + 𝛼Δ𝒗, 𝒈- + 𝛾Δ𝒈, 𝒃- + 𝛽Δ𝒃)‖++ (29) 

that utilizes the polynomial nature of network governing 
equations and constraints on its response to efficiently obtain a 
set of three damping factors (𝛼, 𝛽, 𝛾 ∈ [0,1]). Furthermore, it 
minimizes the problem residual at the current NR iteration.  

The global solution to (29) that can be efficiently obtained 
using the methodology presented in [14], which minimizes the 
problem residual more or equal (same values of damping 
factors) as the solution of an exact line search problem. It also 
represents another example of how reaching beyond a generic 
set of algorithms while considering the nature of the problem 
can create a more efficient, problem-specific solution 
methodologies. Lastly, with consideration of the generality of 
other techniques, the 3D space search problem from (29) can 
be, without loss of generality, replaced with a form of 
traditional line search if another non-polynomial and or non-
circuit based ACPF formulation is used.  

C.  Variable Filtering technique  
Thus far, this paper introduced a new set of NR step control 

techniques independent of tuning parameters. However, even 
with the vectorized NR step control, the nonlinear nature of 
ACPF model can, in general, cause small consecutive residual 
decrement, thereby requiring a step-size perturbation to prevent 
the efficiency issues and enable the future convergence. To that 
end, and in contrast to the generic, often used random step 
perturbation methods [3],[39], the Variable Filtering technique 
perturbs the NR step based on the physical characteristics of 
each variable obtained from the network representation in (10). 
Namely, as shown in (30), the variable perturbations are 
introduced by letting a NR step that remains within the 
“trusted” physical region 𝑧)*,!, “pass”, and hence not get 
affected by damping factors that saturate the problem residual. 

𝒛- → �
𝑧!-51  if	 |Δ𝑧!| < 𝑧)*,!
𝑧!- 						if	|Δ𝑧!| ≥ 𝑧)*,!

 (30) 

With this Variable Filtering technique, the ECP algorithms 
can fully utilize the advantages of both circuit simulation and 
generalized optimization methods.   
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V.  ROBUST, EFFICIENT AND SCALABLE ACPF ANALYSES  
In general, the components defining a robust, efficient, and 

scalable technology for analyzing and designing a power 
system steady-state response can be classified as: 

1. Accurate and concurrent incorporation of all realistic, 
industry required control and operational steady-state 
constraints within an AC power flow model. 

2. Scalability to realistic size, fully constrained models. 
3. Robustness and efficiency of model simulation and 

building (optimization) methods. 
4. Consideration of simplified, convex models only for 

initialization processes and cleaning the input data. 

The lack of a generalized technology is projected to annually 
cost millions of dollars [40] and lead the operational and 
planning grid engineers towards basing their ACPF case 
“building” on simplified models. Moreover, these convexified 
power flow models are not AC feasible, and the transition to a 
fully feasible model can turn into days and even weeks and 
months long “guess and check” processes that require both 
experienced knowledge of grid physics, as well as the “art of 
tuning” of the traditional ACPF solvers [41]. Most importantly, 
the outcome potentially guarantees model solvability, but is 
often far away from an optimal point. 

To address these real-life challenges, this section motivates a 
development and utilization of problem-specific physics-based 
numerical methods. Namely, it is demonstrated that the ECP 
framework allows for accurate and efficient AC power flow 
simulation and optimization processes while producing high 
quality solutions. Most importantly, even though the introduced 
set of physics-inspired algorithms cannot generally guarantee 
the global optimality of the processes, an efficiently obtained 
optimal solution that considers the realistic power grid 
constraints and operational limits is better than a non-optimal 
or even a global one that does not. Results for several examples 
are generated within a developed MATLAB prototype ECP-
solver, on a MacBook Pro 2.9 GHz Intel i9. 

A.  Realistic AC Power Flow simulations 
To demonstrate generality as well as the benefit of exploiting 

the grid physics to obtain ACPF solutions efficiently and 
accurately, we first consider  solving a set of ACPF problems 
defined in terms of equivalent circuit equations with implicitly 
constrained voltage regulation (VR), modeled with non-ideality 
factor 𝜀 = 109Z, as given in (1)-(6). The set of cases solved 
within the prototype ECP-based solver, as well as generic 
MATLAB numerical solver FSolve, includes three synthetic 
ACPF models [29] corresponding to a 70k bus Eastern 
Interconnection (EI), a 25k bus Northeastern, and a 10k 
Western Interconnection (WECC) models. To provide a fair 
comparison between the physics-inspired and generic 
numerical methods, the identical initialization, together with 
the Jacobian matrix and function vector required to obtain NR-
steps is passed to both solvers, thus making them only differ in 
the methods used for iterative NR-step control. The obtained 
convergence profiles are presented in Figure 10. 

 
Figure 10. Comparing the convergence profiles of a generic 

numerical methodology vs. physics inspired ECP framework. 

As expected, the utilization of the domain-specific 
knowledge within vectorized NR step control performed better 
as compared to a generic numerical toolbox. Notably, the 
difference in convergence profiles from Figure 10 may have 
meant a lot for the first computers that were used by those who 
first formulated power flow analyses on a computer, but today 
it “only” represents a nice result for publications, since both 
solvers converge within or less than a second. The obtained 
solution quality, however, represents a more valuable metric for 
the further comparisons. For example, consider the physical 
characteristic of a VR (voltage regulator) device from Figure 4 
with the profile captured for all of the VRs in the Eastern 
Interconnection testcase, as shown in Figure 11.  

 
Figure 11. VR profiles for 5594 regulated system buses. Each VR 

state is obtained by normalizing the regulated bus voltage with 
respective setpoint |𝑉&|, and further plotting it as a function of 

reactive power supplied by the VR device. For plotting consistency, 
each reactive power value is shifted by its minimum operational limit 

and further normalized by its capacity.   

In referring to both sets of 5594 VR states of 70k bus EI test 
case from Figure 11, it is important to note that all of them 
represent a solution to (5)-(6). However, controlling each 
variable step based on the known physical characteristics of 
VR devices (Figure 4) within ECP solver ensures the solution 
quality, i.e., the final solution corresponds to a physically 
realizable state. In contrast, not utilizing the knowledge of 
physical characteristics within a generic solver results in an 
ACPF solution with 404 VR states in the non-operational 
region, and an additional 52 states that do not respect the 
operational reactive power limits, which renders the ACPF 
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solution obtained via a generic toolbox unusable. To that end, 
the lack of inclusion of the problem specific knowledge within 
the generic numerical methods may also serve as an explanation 
for the utilization of not always stable outer loop approaches 
[42] implemented to handle the disjunctive model behavior 
within the standard, industry accepted ACPF toolboxes. 

Finally, with the efficient capability of implicitly enforcing a 
set of realistic operational and control characteristics on an 
ACPF model, the proposed framework naturally extends to 
include more accurate power flow optimizations.  

B.  Realistic AC Power Flow optimizations  
The AC-OPF problem that enforces the PQ capacity limits 

for generators as well as the bus voltage and thermal flow 
constraints on an ACPF model was first formulated over half of 
a century ago [43], but remains a challenging optimization 
problem [40]. We first analyze the performance of an AC-OPF 
problem defined and solved within ECP framework and 
compare it against the traditional formulations solved within 
generic optimization solvers in MATPOWER 7.0 [44]. The 
examined cases (Table 2), characterized in terms of Polar and 
Rectangular P/Q and I/V ACPF formulations, are solved using 
the effective known tools, KNITRO, FMINCON and MIPS 
[44], and compared with the solutions from our ECP solver. The 
MATPOWER best-case results based on the cost function 
values, followed by the iteration count, are presented in Table 
2. To ensure that the compared approaches only differ in the 
formulation and numerical methods, the identical input file 
initialization is supplied to both solvers.  

Table 2. AC-OPF iteration counts for the results obtained by 
KNITRO that performed the best among the three considered solvers, 

and the circuit formulation implemented within ECP framework. 
Note that both MATPOWER best-results and ECP solutions match in 

the optimal objective function values. 
case # Bus MATPOWER  ECP Cost [$/hr.] Iter. # Formulation Iter. # 

1354pegase 1,354 28 Polar I/V 15 74,064.2 
2383wp 2,383 32 Polar P/Q 22 1,863,597.5 
2736sp 2,736 23 Polar P/Q 19 1,307,998.3 

2869pegase 2,869 27 Polar P/Q 19 133,993.5 
3012wp 3,012 31 Polar I/V 24 2,584,033.9 
6468rte 6,468 35 Polar I/V 22 87,139.7 

9241pegase 9,241 56 Polar I/V 26 315,902.5 
ACTIVSg10k 10,000 80 Polar I/V 25 2,488,650.0 
ACTIVSg25k 25,000 48 Polar P/Q 24 6,019,821.2 
ACTIVSg70k 70,000 138 Polar P/Q 34 16,538,287.9 

As can be seen from Table 2, the polar formulations generally 
performed better within MATPOWER. However, the larger a 
problem gets, the more variables and inequality constraints, and 
therefore, the larger the impact of the conservatism that is 
introduced by the traditionally-used step limiting techniques. In 
contrast, the dependency between the problem size and the 
performance of the solution process is not as strongly indicated 
for the results obtained within the ECP solver, demonstrating 
the advantages of treating each of the NR step sizes more 
independently and based on their physical characteristics.  

Next, consider a set of network models recently introduced 
for ARPA-E sponsored Grid Optimization (GO) Challenge 1 
[45], given in Table 3, whose respective AC-OPF solutions are 
efficiently obtained within the ECP solver, as presented in 

Figure 12. From the results shown in Table 3,  it can be seen 
that none of the AC-OPF solutions are fully-contingency 
secured, which renders the respective optimal operating points 
practically unusable. The security of AC-OPF solutions can be 
ensured by representing each of the contingency events as an 
ACPF model given by (1)-(6) and appending its governing 
equations as an additional set of constraints to the originally 
defined AC-OPF problem. This is, however, easier said than 
done, since the problem size drastically increases with each 
additional contingency included. For instance, the network N13 
with all 9519 contingencies results in a security constrained 
AC-OPF problem with ~1.6 billion variables, which represents 
an ideal example for testing the scalability of the introduced 
ECP concept. 

Table 3. GO-Competition 1, Scenario 1 network models. The 
infeasible contingencies are identified by solving [38] an ACPF 

model given by (1)-(6) with obtained AC-OPF set points. 
Network # Bus # N-1 Cont. # Infeasible Cont. 

N1 500 386 22 
N3 793 86 9 
N6 2000 2594 4 
N7 2312 953 34 
N8 3013 1959 3 

N81 3288 4650 73 
N84 4601 7075 48 
N9 4918 5065 17 

N12 9591 4377 62 
N13 10000 9519 70 

To examine the scalability and impact the physics-inspired 
numerical methods have on the convergence of large-scale 
optimizations, we utilize the fully parallelizable Bordered-
Block-Diagonal structure of the SC-AC-OPF problem and run 
it using a commercial version of SUGARTM cloud-based 
platform (courtesy of Pearl Street Technologies) that is built on 
the introduced ECP methodology. The resulting iteration counts 
indicate a weak correlation between problem size and solution 
process efficiency are presented in Figure 12. Notably, the 
iteration counts are not significantly affected for the number-of-
contingency times increase of problem sizes, thus 
demonstrating the scalability of the introduced ECP framework. 
Importantly, the results presented in Figure 12 indicate that the 
concept introduced in this paper can be applied to distributed 
optimization problems in general. In contrast to generic state-
of-the-art approaches with a global NR-step damping methods, 
the localized nature of the NR-step limiting techniques can be 
applied per processor and does not require additional global 
communication. 

 
Figure 12. Physics-based vectorized NR step control ensures the 
weak correlation between the problem size and iteration count. 
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VI.  CONCLUSIONS  
Due to climate change and the global warming crises, 

electrical power systems are evolving faster than ever before. 
To make an actual impact and solve the real-life challenges 
imposed on power system engineers it is necessary for the 
optimization formulations and methods to incorporate the 
physics from the grid. To that end, this paper postulates a novel 
concept for developing the problem specific numerical methods 
by infusing the knowledge of power system physics directly 
within the generalized optimization theory and algorithms. The 
introduced power grid-specific numerical methods were 
demonstrated to facilitate significant improvements in 
accuracy, robustness, and scalability of AC power flow 
analyses when compared against the existing generic “state-of-
the-art” methodologies. Moreover, this approach is directly 
compatible with, and naturally extends to, distributed 
optimizations. The result is a foundation for analyzing and 
ensuring a reliable, sustainable, and resilient grid of the future. 
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