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Abstract—In this paper we formulate and solve the AC Optimal 

Power Flow (AC-OPF) as an equivalent circuit problem in terms 

of current, voltage and admittance state variables. The generator 

models are represented using conductance and susceptance state 

variables, and the operational and network constraints are 

translated to corresponding current/voltage constraints without 

loss of accuracy or generality. To understand the physics behind 

the optimality conditions of the optimization problem, we extend 

the linear adjoint circuit theory to translate them to equivalent 

circuit domain. It is shown that the operating point that defines the 

equivalent circuit solution precisely represents an AC-OPF 

solution. We then further exploit the equivalent circuit 

representation to use power flow simulation techniques to robustly 

solve the optimization problem. The efficiency of our approach is 

demonstrated for several AC-OPF benchmark test cases (up to 

70k buses) under nominal and congested operating conditions, and 

the runtime and scalability properties are presented.  

Index Terms— AC Optimal Power Flow, equivalent circuit, 

circuit formulation, circuit formalism, nonlinear optimization 

I. INTRODUCTION 

he AC Power Flow analysis, based on iteratively solving 

the nonlinear power mismatch equations, was first 

conceived five decades ago [1], and still remains the standard 

analysis for operation and planning of the transmission-level 

power grids. Not long after the first power flow formulation was 

postulated, the Alternating Current Optimal Power Flow (AC-

OPF) was introduced by Carpentier [2] and Dommel and 

Tinney in [3]. The motivation behind the first AC-OPF problem 

was to find a steady-state operating point of a power system that 

minimizes the cost of generated real power while satisfying the 

operating, network and stability constraints. Most notably, the 

financial market is defined by nonlinear pricing, while the 

highly nonlinear ‘PQV’ based power mismatch equations 

characterize the network constraints that model the electrical 

power system [4]. When both are combined with operating and 

stability constraints, they create a daunting optimization 

problem with many possible local optimal solutions [5]. For this 

reason, the classical OPF is recognized as a NP hard problem to 

solve, and a robust technique that can solve for an optimal 

solution in a reasonable amount of time still does not exist [4]. 

FERC (Federal Energy Regulatory Commission) has reported 

[4] that today’s “approximate-solution techniques may 
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unnecessarily cost tens of billions of dollars per year” and 

“result in environmental harm from unnecessary emissions.” 

Developing the robust and efficient methodology that can 

solve for an optimal solution of the AC-OPF problem has been 

a prominent research challenge and was until recently based on 

improving the local optimization algorithms [6]. The recent 

breakthrough has been made by introduction of relaxation 

algorithms that claim to find the global optimal solution of AC-

OPF in [7]-[11]. The most promising advancement is presented 

in [8],[9], where the authors use the Semi-Definite (SDP) and 

Second-Order Cone (SOCP) Programing relaxation to handle 

the non-convexities of the AC-OPF problem. The proposed 

relaxation algorithms are demonstrated to be exact and yield the 

zero-duality gap for the initially examined test cases [8]. 

Unfortunately, this is not the case in general [5][12], and as 

discussed in [5], the proposed SDP/SOCP relaxations succeed 

in solving radial network configuration test cases but are exact 

for meshed network test cases when there is only one feasible 

solution [5],[12]. The other major drawbacks that further affect 

the recovery of the global optimum from the relaxed problems, 

such as the inability to handle negative Lagrange multipliers 

caused by bounding line constraints, are discussed in [12].  

Understanding and exploiting the physics of a power system 

is the key factor to robust simulation and relaxation algorithms 

[10]. Importantly, the inherent nonlinearity of the traditionally 

used ‘PQV’ formulation due to the power mismatch equations 

represent the biggest impediment to the formulation and 

efficient solution [4]. Therefore, different formulations that 

have been proposed since the introduction of AC-OPF problem 

mostly differ in the approaches used to characterize the network 

constraints [4]. Notably, it has been suggested [4] that the 

current-voltage based (I-V) formulations with linear network 

constraints and local nonlinearities isolated at each bus, 

seemingly represents the most promising formulation for 

modeling of network constraints. However, efficient handling 

of generator models that has previously shown to be 

challenging for I-V formulations of transmission level 

powerflow simulations [13]-[14] worsened in the optimization 

problem, causing numerical instability to occur [14]. To address 

this, the authors in [14] have proposed the hybrid method, 

where the generator buses are modeled using power mismatch 

equations while the rest of the network is handled using current 

mismatch equations. Importantly, this and all of the proposed 

formulations are based on the models that introduce other non-
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convexities in both the equality and inequality constraints. This 

keeps the OPF problem highly nonlinear, as well as prevents 

the robust large-scale optimization of power systems due to the 

inability to efficiently handle the nonlinear constraints [4]. 

Therefore, the challenge remains to find a robust algorithm that 

is capable of solving the generalized AC-OPF problem with all 

the emerging and existing grid technologies. 

Recent advances in power system simulations have included 

the use of complex current and voltage state variables within 

the equivalent split-circuit framework for solving the 

powerflow [15]-[17]. This formulation has demonstrated that 

the equivalent circuit formalism provides new insight into 

robustly analyzing the complete powerflow simulation problem 

[16]. More importantly, decades of research toward advancing 

circuit simulation methods that are now capable of robustly 

simulating nonlinear circuits with billions of nodes can be 

adapted and directly applied to the analysis of power systems 

[18]. Thus, it is shown that the generator model problems 

introduced by application of the I-V formulation can be 

successfully overcome, thereby allowing the robust scaling to 

massive-size transmission problems [17].  

In this paper we propose a novel framework for solving the 

AC Optimal Power Flow problem in terms of equivalent split-

circuit state variables as an extension of the recent 

advancements in power flow analysis. The key contribution of 

the paper is the representation of the AC-OPF problem in terms 

of a nonlinear equivalent circuit problem. Importantly, the 

generator model is redefined (Section III.) in terms of 

conductance and susceptance state variables, where the 

negative conductance supplies the real power to the circuit, 

while the susceptance represents an inductor or capacitor that 

supplies or absorbs the reactive power respectively. The 

objective of real power cost minimization is now related to the 

network constraints through the generator admittance state 

variables. This formulation does not encounter the convergence 

problems as reported for existing I-V formulations [14]. 

As part of this formulation, a significant contribution is 

attributed to extending the theory for linear adjoint (dual) 

circuits to modeling the steady-state nonlinearities at fixed 

frequency introduced by constant power models. We derive the 

adjoint circuits for constant power models in Section IV, and 

further show that coupled simulation of power flow and its 

adjoint circuit with addition of other control circuits exactly 

maps the necessary optimality conditions of the optimization 

problem. Therefore, if sufficient conditions are met, the circuit 

solution exactly represents an optimal power flow solution.  

Lastly, a supporting contribution is the development of 

circuit simulation techniques to ensure the robust large-scale 

convergence of proposed circuit formulation. The overall result 

is our algorithm, ESCAPE (Enhanced Simulation of Circuit-

based AC-OPF Problem Equivalent), that is an extension of our 

recently introduced powerflow circuit simulation methods [16]-

[17], with inclusion of diode limiting heuristics [20]-[21] to 

preserve the robust and efficient convergence properties, 

scalable to any-size power grids. 

The proposed framework is applied to solve the AC-OPF 

circuit for congested and nominal (without congestion 

constraints) operating conditions of various available test cases 

(up to 70k buses), and the results are compared with traditional 

AC-OPF and SDP relaxed AC-OPF results in Section VI.  

II. TRADITIONAL AC-OPF FORMULATIONS 

Consider a power system given by the set of buses 𝒩, 

whereas set of generators 𝒢 and load demands 𝒟 are subsets of 

𝒩, that are further connected by a set of network elements, 𝒯𝑋. 

The objective of traditional AC-OPF is to find a steady-state 

solution of a power system that minimizes the cost function of 

real power generation, ℱ𝑐(𝑷𝑮), defined throughout the paper as 

a quadratic function given by a set of coefficients {𝒂, 𝒃, 𝒄}: 

min
𝑷𝑮

ℱ𝑐(𝑷𝑮) = ∑[𝑎𝑔 + 𝑏𝑔𝑃𝐺,𝑔 + 𝑐𝑔𝑃𝐺,𝑔
2

|𝒢|

𝑔=1

] (1) 

while satisfying the power balance equations (2)-(3) and 

additional operational constraints (4)-(7). 

𝑃𝐺,(𝑔∈𝒢(𝑖)) − 𝑃𝐷,𝑖 = |𝑉𝑖|∑|𝑉𝑘|(𝐺𝑖𝑘
𝑌 cos 𝜃𝑖𝑘 + 𝐵𝑖𝑘

𝑌 sin 𝜃𝑖𝑘)

|𝒩|

𝑘=1

 (2) 

𝑄𝐺,(𝑔∈𝒢(𝑖)) − 𝑄𝐷,𝑖 = |𝑉𝑖|∑|𝑉𝑘|(𝐺𝑖𝑘
𝑌 sin 𝜃𝑖𝑘 − 𝐵𝑖𝑘

𝑌 cos 𝜃𝑖𝑘)

|𝒩|

𝑘=1

 (3) 

  𝑃𝑚𝑖𝑛,𝑔 ≤ 𝑃𝐺,𝑔 ≤ 𝑃𝑚𝑎𝑥,𝑔  ∀𝑔 ∈ 𝒢 (4) 

  𝑄𝑚𝑖𝑛,𝑔 ≤ 𝑄𝐺,𝑔 ≤ 𝑄𝑚𝑎𝑥,𝑔 ∀𝑔 ∈ 𝒢 (5) 

  𝑉𝑚𝑖𝑛,𝑖 ≤ |𝑉𝑖| ≤ 𝑉𝑚𝑎𝑥,𝑖  ∀𝑖 ∈ 𝒩 (6) 

  𝑃𝑒
2 + 𝑄𝑒

2 ≤ 𝑆𝑚𝑎𝑥,𝑒
2  ∀𝑒 ∈ 𝒯𝑋 (7) 

where |𝑉𝑖| and 𝜃𝑖 represent voltage magnitude and angle state 

variables, whereas 𝑃𝐺,(𝑔∈𝒢(𝑖)), 𝑃𝐷,𝑖, 𝑄𝐺,(𝑔∈𝒢(𝑖))and 𝑄𝐷,𝑖 are 

generated and demanded real and reactive powers at the 𝑖𝑡ℎbus 

respectively. Variable 𝜃𝑖𝑘 defines the voltage angle difference 

between buses 𝑖 and 𝑘, while 𝐺𝑖𝑘
𝑌  and 𝐵𝑖𝑘

𝑌  represent the real and 

imaginary parts of the bus admittance matrix. Each generator in 

the set 𝒢 is further defined by the operating bounds on real and 

reactive powers (𝑃𝑚𝑖𝑛,𝑔, 𝑃𝑚𝑎𝑥,𝑔, 𝑄𝑚𝑖𝑛,𝑔 and 𝑄𝑚𝑎𝑥,𝑔) given in 

(4) and (5), while the voltage magnitude of each bus is bounded 

by the operating limits given in (6). Lastly, (7) represents the 

thermal limits of a 𝑒𝑡ℎ network branch, given for maximum 

apparent power flow bounds (𝑆𝑚𝑎𝑥,𝑒), where real and reactive 

power flows can be written as functions of 𝑖𝑡ℎ and 𝑘𝑡ℎ bus 

voltage magnitudes and angles connected by the branch 𝑒 as:  

𝑃𝑒 = |𝑉𝑖|
2𝐺𝑖𝑘

𝑌 − |𝑉𝑖||𝑉𝑘|(𝐺𝑖𝑘
𝑌 cos 𝜃𝑖𝑘 + 𝐵𝑖𝑘

𝑌 sin 𝜃𝑖𝑘) (8) 

𝑄𝑒 = −|𝑉𝑖|
2𝐵𝑖𝑘

𝑌 − |𝑉𝑖||𝑉𝑘|(𝐵𝑖𝑘
𝑌 cos 𝜃𝑖𝑘 − 𝐺𝑖𝑘

𝑌 sin 𝜃𝑖𝑘) (9) 

It is important to note that the AC-OPF problem formulated 

using the power mismatch equations in rectangular coordinates 

seems to provide a less nonlinear (quadratic nonlinearities) 

formulation, and as such, is used for the relaxation approaches 

that are proposed in [7]-[11]. It does, however, preserve the 

local optimal solutions [5] and remains nonlinear and non-

convex both locally and within the network configuration that 

has a linear nature in terms of current and voltage state variables 

(linear RLC network) [4]. 

III. DEFINING NETWORK AND OPERATIONAL CONSTRAINTS 

USING EQUIVALENT CIRCUIT STATE VARIABLES 

The equivalent circuit approach to generalized modeling of 

power flow was recently introduced in [15]-[17]. It was shown 

that each of the power system components can be translated to 

an equivalent circuit model based on underlying relations 

between current and voltage state variables without loss of 

generality. To further ensure the analyticity of nonlinear 
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complex governing circuit equations for solution via Newton 

Raphson, the equations are split into real and imaginary parts 

and represented by two equivalent sub-circuits, real and 

imaginary, that are coupled by controlled sources. The 

equivalent split-circuit representation of the most prominent 

powerflow models are described in [15]-[16].   

In this section we rederive the circuit model of a generator 

based on the relationship between current, voltage and 

impedance, as well as introduce the transmission line 

congestion constraint based on maximum current limit. The two 

new models incorporated within the powerflow split-circuit 

formulation define the network constraints of the circuit 

theoretic AC-OPF problem. 

A. Generator GB macro-model 

Considering the �̃�𝛤  and 𝐼𝐺,𝑔 as the output complex voltage 

and complex current of the 𝑔𝑡ℎ generator from the set 𝒢, 

operating at a fundamental frequency, where the subscript index 

𝛤 represents the corresponding bus index of the 𝑔𝑡ℎ generator. 

For any operating point of a power system, there must exist 

a driving point admittance that completely characterizes the 

current and voltage relationship of that generator. Hence, a first 

order equivalent circuit model defined by a conductance that 

supplies the real power (a negative conductance) and a 

susceptance that adjusts the reactive power can completely 

capture such characteristics without loss of generality. The 

governing equation of the generator, whose equivalent circuit 

can be seen in Fig. 1(a), is obtained from Ohm’s Law: 

  𝐼𝐺,𝑔 = (𝐺𝐺,𝑔 + 𝑗𝐵𝐺,𝑔)�̃�𝛤  ∀𝑔 ∈ 𝒢 (10) 

The generated real and reactive powers (𝑃𝐺,𝑔,𝑄𝐺,𝑔) are then 

constrained as given in (11)-(12) and used to relate the 

equivalent circuit governing equations to the cost function of 

the optimization problem. 

  𝑃𝐺,𝑔 = −𝐺𝐺,𝑔|𝑉𝛤|
2 ∀𝑔 ∈ 𝒢 (11) 

  𝑄𝐺,𝑔 = 𝐵𝐺,𝑔|𝑉𝛤|
2 ∀𝑔 ∈ 𝒢 (12) 

B. Modeling the voltage magnitude constraint 

It can be shown that the voltage magnitude variable only 

appears as a squared term in the definitions of real and reactive 

powers, (11)-(12) . Therefore, to further control the bus voltage 

magnitudes within the optimization problem, we introduce a 

new variable, 𝑑𝑠𝑞,𝑖 that replaces the ‘|𝑉𝑖|
2’ term and further 

reduces the nonlinearities of the formulation. The voltage 

magnitude constraint and its limits are then redefined as:  

  𝑑𝑠𝑞,𝑖 = 𝑉𝑅,𝑖
2 + 𝑉𝐼,𝑖

2  ∀𝑖 ∈ 𝒩 (13) 

  𝑉𝑚𝑖𝑛,𝑖
2 ≤ 𝑑𝑠𝑞,𝑖 ≤ 𝑉𝑚𝑎𝑥,𝑖

2  ∀𝑖 ∈ 𝒩 (14) 

Therefore, the generator real and reactive power constraints 

from (11)-(12) are reformulated in terms of conductance, 

susceptance and 𝑑𝑠𝑞  variables, as follows:  

  𝑃𝐺,𝑔 = −𝐺𝐺,𝑔𝑑𝑠𝑞,𝛤  ∀𝑔 ∈ 𝒢 (15) 

  𝑄𝐺,𝑔 = 𝐵𝐺,𝑔𝑑𝑠𝑞,𝛤 ∀𝑔 ∈ 𝒢 (16) 

The operating limits on real and reactive powers generated 

remain the same, as in (4) and (5). 

Similarly, the PQ load split-circuit model [15]-[16] 

connected to bus 𝑖,  is reformulated in terms of 𝑑𝑠𝑞  as nonlinear 

real and imaginary current sources (𝐼𝑃𝑄,𝑖
𝑅 , 𝐼𝑃𝑄,𝑖

𝐼 ): 

          𝐼𝑃𝑄,𝑖
𝑅 =

𝑃𝐿,𝑖
𝑑𝑠𝑞,𝑖

𝑉𝑅,𝑖 +
𝑄𝐿,𝑖
𝑑𝑠𝑞,𝑖

𝑉𝐼,𝑖      ∀𝑖 ∈ (𝒟 ⊆ 𝒩) (17) 

          𝐼𝑃𝑄,𝑖
𝐼 =

𝑃𝐿,𝑖
𝑑𝑠𝑞,𝑖

𝑉𝐼,𝑖 −
𝑄𝐿,𝑖
𝑑𝑠𝑞,𝑖

𝑉𝑅,𝑖      ∀𝑖 ∈ (𝒟 ⊆ 𝒩) (18) 

where 𝑃𝐿,𝑖 and 𝑄𝐿,𝑖 are specified PQ load parameters, 𝑉𝑅,𝑖 and 

𝑉𝐼,𝑖 are real and imaginary load voltages respectively.  

 
Fig. 1. (a) Macro-model of a generator in terms of conductance and 

susceptance state variables and (b) complex pi model of a transmission line. 

C. Thermal Transmission Line Constraint  

Traditional AC-OPF defines the transmission line thermal 

constraint as the upper bound of the apparent power flowing in 

the line, as in (7). However, the transmission line thermal 

constraints are determined by material properties of the 

transmission line conductors and equipment in terms of 

maximum current magnitude [4]. Therefore, constraining the 

current flow represents the most natural way of modeling this 

constraint. Herein we show the thermal limit of a transmission 

line segment between nodes 𝑖 and k, from Fig. 1(b), can be 

mapped to the equivalent maximum current limit and thereby 

trivially handled within the equivalent split-circuit framework. 

Thermal line constraint given in terms of the real and imaginary 

line currents can be expressed from the nominal voltage 

magnitude as: 

𝐼𝑅𝑥,𝑖𝑘
2 + 𝐼𝐼𝑥,𝑖𝑘

2 = 𝑖𝑠𝑞,𝑖𝑘 ≤
𝑆𝑚𝑎𝑥,𝑒
2

𝑉𝑛𝑜𝑚
2

 ∀𝑖, 𝑘 ∈ 𝒩    ∀𝑒 ∈ 𝒯𝑋 (19) 

The real and imaginary transmission line currents (𝐼𝑅𝑥,𝑖𝑘 and 

𝐼𝐼𝑥,𝑖𝑘) are further defined in terms of real and imaginary bus 

voltages: 

𝐼𝑅𝑥,𝑖𝑘 = −
𝐵𝑠ℎ
2
𝑉𝐼,𝑖 + 𝐺𝐿(𝑉𝑅,𝑖 − 𝑉𝑅,𝑘) − 𝐵𝐿(𝑉𝐼,𝑖 − 𝑉𝐼,𝑘) (20) 

𝐼𝐼𝑥,𝑖𝑘 =
𝐵𝑠ℎ
2
𝑉𝑅,𝑖 + 𝐺𝐿(𝑉𝐼,𝑖 − 𝑉𝐼,𝑘) + 𝐵𝐿(𝑉𝑅,𝑖 − 𝑉𝑅,𝑘) (21) 

where 𝐺𝐿 =
𝑅𝐿

𝑅𝐿
2 + 𝑋𝐿

2  and 𝐵𝐿 =
𝑋𝐿

𝑅𝐿
2 + 𝑋𝐿

2  .  

Alternatively, the thermal limit can be directly defined by the 

upper bound on current magnitude [4]. 

IV. FORMULATING EQUIVALENT SPLIT-CIRCUIT MODELS OF 

THE AC-OPF PROBLEM  

A. Defining the reformulated optimization problem 

Consider the AC-OPF problem formulated in terms of power 

and our equivalent circuit state variables (𝑿): 

min
𝑷𝑮

ℱ𝑐(𝑷𝑮) (22) 

subject to: 

𝐼𝑜(𝑿) ≤ 0 (23) 

𝐼𝑐(𝑿) = 0 (24) 

where  

𝑿 = [𝑽𝑹, 𝑽𝑰, 𝒅𝒔𝒒, 𝑮, 𝑩, 𝑷𝑮, 𝑸𝑮, 𝒊𝒔𝒒]
𝑇
 (25) 
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the bounds in (23) represent the operating limits of the power 

system defined in (4)-(5), (15) and (19), while the set 

generalized circuit equations from (24) is given as: 

𝑮⊙𝑽𝑹 −𝑩⊙ 𝑽𝑰 + 𝑰𝑷𝑸
𝑹 + 𝐺𝑌𝑽𝑹 − 𝐵

𝑌𝑽𝑰 = 𝟎 (26) 

𝑮⊙𝑽𝑰 + 𝑩⊙𝑽𝑹 + 𝑰𝑷𝑸
𝑰 + 𝐺𝑌𝑽𝑰 + 𝐵

𝑌𝑽𝑹 = 𝟎 (27) 

𝑷𝑮 + 𝑮⊙𝒅𝒔𝒒 = 𝟎 (28) 

𝑸𝑮 − 𝑩⊙𝒅𝒔𝒒 = 𝟎 (29) 

𝑽𝑹⊙𝑽𝑹 + 𝑽𝑰⊙𝑽𝑰 − 𝒅𝒔𝒒 = 𝟎 (30) 

𝑰𝑹𝒙⊙ 𝑰𝑹𝒙 + 𝑰𝑰𝒙⊙ 𝑰𝑰𝒙 − 𝒊𝒔𝒒 = 𝟎 (31) 

Herein, operator ⊙ represents the Hadamard product,  𝐺𝑌and 

𝐵𝑌 represent the linear network given in terms of real and 

imaginary components of the bus admittance matrix, while the 

nonlinear PQ load currents (𝑰𝑷𝑸
𝑹 , 𝑰𝑷𝑸

𝑰 ) are functions of voltage 

variables as defined by (17)-(18). Note that the conductance and 

susceptance (𝑮 and 𝑩) represent the variable vectors with zero 

elements, corresponding to indices that are not in 𝒢. 

We start the derivation of the necessary optimality 

conditions by writing the Lagrangian function as: 

ℒ(𝑿, 𝝀, 𝝁) = ℱ𝑐 + 𝝀
𝑇𝐼𝑐(𝑿) + 𝝁

𝑇𝐼𝑜(𝑿) (32) 

Since the governing split-circuit equations are the real-valued 

functions continuous on the feasible domain, the primal, dual 

and complementary slackness (CS) problems, namely Karush-

Kuhn-Tucker (KKT) conditions, are obtained by differentiating 

(32) with respect to primal and dual variables as: 

𝒥𝐶
𝑇(𝑿) 𝝀 = −∇𝑿ℱ𝑐 − 𝒥𝑜

𝑇𝝁 (33) 

𝐼𝑐(𝑿) = 0 (34) 

𝝁𝑻𝐼𝑜(𝑿) = 0 (35) 

𝐼𝑜(𝑿) ≤ 0 (36) 

𝝁 ≥ 0 (37) 

where 𝒥𝐶(𝑿) and 𝒥𝑜represent the Jacobian matrices of vector-

valued functions 𝐼𝑐(𝑿) and 𝐼𝑜(𝑿), while ∇𝑿ℱ𝑐 is the gradient 

vector of the cost function ℱ𝑐. 

Finally, the first order sensitivity matrix of the equivalent 

circuit constraints 𝒥𝐶(𝑿) is dependent on 𝑿, and therefore a 

solution to the redefined optimization problem (𝑿∗) is said to be 

optimal if in addition to satisfying the regulatory KKT 

conditions from (33)-(37), it further satisfies the second order 

sufficient condition [19] given by: 

  𝝉𝑇
𝜕𝒥𝑇(𝑿∗)

𝜕𝑿
𝝉 > 0 ∀(𝝉 ≠ 𝟎) ∈ 𝑇𝑋∗  (38) 

where 𝑇𝑋∗  represents the tangent linear sub-space at 𝑿∗. 

To solve for the stationary point of KKT conditions (𝑿∗), 
there exist many algorithms that can be found in literature. One 

of them is the Primal-Dual Interior Point (PDIP) method [19], 

which approximates the complementary slackness condition 

from (35) as in (39), and iteratively solves the linearized (first 

order Taylor expansion) set of equations from (33)-(34), (39). 

𝝁⊙ 𝐼𝑜(𝑿) = −𝜀𝒆 (39) 

where the average complementary slackness violation (𝜀) 
approaches zero at convergence and 𝒆 is vector of ones.  

B. Translating optimization problem to nonlinear circuit 

problem 

The circuit theoretic formulation for modeling the network 

constraints of AC-OPF problem remains nonlinear due to the 

models that define the constant power elements, hence 

introduced the nonlinearities within the dual problem (33). 

Importantly, the generalized nonlinear optimization algorithms 

such as PDIP method, do not fully utilize the physics of the 

primal and dual AC-OPF nonlinearities, but apply the different 

types of generalized backtracking and damping techniques to 

ensure feasibility and help convergence [19].  In contrast, the 

robust and scalable nonlinear simulation algorithms are 

developed from an understanding of the physics behind each 

nonlinear element within the problem. For instance, it would be 

intractable to use generalized nonlinear solvers to simulate a 

billion-node integrated circuit with nonlinearities such as 

diodes and transistors without utilizing knowledge of the 

physical device characteristics as done by SPICE,[20]-[21]. 

We have recently demonstrated that the circuit formalism 

enabled within the equivalent split-circuit of a powerflow offers 

a new insight to understanding the knowledge of the physical 

characteristics of power grid device models. For instance, from 

the circuit perspective, the reported convergence instabilities 

reported in [14] for the generator model that is used for current 

injection based  I-V formulations for power flow can be partially 

attributed to managing the set of constraints that control the 

voltage across the independent current sources [18]. This 

insight regarding the grid device characteristics can be utilized 

to ensure robust convergence along with scalability to any-size 

power flow problems [16]-[17]. Hence, the same circuit 

simulation heuristics can be applied to the primal problem from 

(34). Herein, our objective is to understand the nature of 

nonlinearities of dual problem (33) by representing it as an 

equivalent circuit and solve it as a circuit simulation problem 

as well. The mapping doesn’t introduce any approximation, but 

rather provides the important information that can be used in 

developing the circuit simulation heuristics solely based on the 

physics of the AC-OPF dual problem to enable robust 

convergence and scalability.  

 Adjoint (dual) linear circuit theory has been well studied and 

understood in the circuit modeling community and has been 

used for various circuit analyses, most notably noise analysis in 

SPICE [20]-[22]. It has been shown that every circuit element 

is further defined by the corresponding adjoint element in the 

dual domain [21]-[22]. This mapping from primal to adjoint 

circuit domain is usually derived from Tellegen’s Theorem and 

calculus of variations, however, due to the lack of circuit 

models that exhibit the constant steady-state power behavior, it 

has not been explored for the nonlinearities at fixed frequency. 

Therefore, to allow the circuit representation of dual problem 

from (33), we first extend the linear adjoint circuit theory to 

include the nonlinearities at fixed frequency. 

 Consider a primal time invariant circuit 𝒞 and its 

topologically equivalent adjoint (dual) �̃�, as defined in phasor 

domain for a fixed frequency. To ensure the analyticity of 

complex circuits and their governing equations, we can without 

loss of generality split them into the respective real and 

imaginary sub-circuits, 𝒮 and �̃�. Now, let the 𝐼, 𝑋, 𝔗 and 𝜆 

represent the real valued branch current and state variables that 

fully define the primal and adjoint split-circuits respectively. 

From Tellegen’s Theorem, in the most general form we can 

then write the following equivalent relationships [18],[21]-[22]: 

𝑰𝑇𝝀 = 𝟎 (40) 

𝑿𝑇𝕿 = 𝟎 (41) 
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The generalized governing equations of primal split-circuit 𝒮 

can be defined in terms of a sensitivity matrix 𝒥𝑋: 

𝑰𝒄 = 𝒥𝑋  𝑿 (42) 

where vector 𝑰𝒄 defines the branch circuit currents and 

excitation sources that set the circuit operating point. Note that 

𝒥𝑋 of a liner split-circuit 𝒮 represent a linear matrix given by 

the network conductance/susceptance values, while the 

nonlinear circuit elements (e.g. PQ load) additionally introduce 

the 𝑿 dependent elements within 𝒥𝑋. 

If the generalized primal circuit equations from (42) are 

substituted for the branch currents 𝑰 in (40), we obtain: 

𝑿𝑇𝒥𝑋
𝑇𝝀 = 𝟎 (43) 

Hence, by comparing the (41) and (43), in order for Tellegen’s 

Theorem to remain satisfied, the vector of adjoint currents 𝕿 

that further defines the generalized transformation from 

network 𝒮 to its adjoint �̃� has to correspond to: 

𝕿 = 𝒥𝑋
𝑇𝝀 (44) 

It can be inferred from (44), that the linear primal split-circuit 

corresponds to the respective linear adjoint circuit, while the 

nonlinear elements from the primal circuit 𝒮 also introduce 

nonlinearities within the adjoint circuit �̃�. Interestingly, from 

the mathematical perspective, the sensitivity matrix that relates 

the adjoint currents and state variables also represents the dual 

matrix of 𝒥𝑋.  

To further clarify the mapping from primal to adjoint split 

circuits, we consider an n-node RLC network excited by a 

single fixed frequency voltage source, as shown in Fig. 2. 

 
Fig. 2. n-node linear RLC circuit example. 

As can be seen from Fig. 2, we split the primal complex circuit 

(left) into the intercoupled real and imaginary sub-circuits 

(right). Note that the governing equations of the obtained sub-

circuits correspond to the split real and imaginary parts of 

complex equations defining circuit 𝒞. Hence, we write the 

sensitivity (split-admittance) matrix 𝒥𝑋,𝑅𝐿𝐶  in terms of 

conductance, and inductor and capacitor susceptance elements: 

𝒥𝑋,𝑅𝐿𝐶 = [
𝑮 𝑩𝑳 − 𝑩𝑪

𝑩𝑪 − 𝑩𝑳 𝑮
] (45) 

By further applying the primal to adjoint circuit mapping 

defined in (44), we can see that the dual RLC circuit represents 

nothing else but the complex conjugate of the primal one. For 

instance, a capacitive susceptance becomes inductive 

(conjugated), etc. The relationship between the RLC circuit 

elements in primal and adjoint domain, as well as constant 

power elements, is further summarized in Table 1. 

To analyze the mapping and effect of excitation sources to 

the adjoint network, we first consider the excitation sources of 

primal split-circuit 𝒮. As it was shown in [21]-[22], the 

sensitivities of excitation sources that set the operating point of 

the primal circuit 𝒮 are zero (e.g. constant current and voltage 

source), and hence do not affect the adjoint circuit. Therefore, 

the primal excitation sources in the adjoint circuit are turned 

OFF, as presented in Table 1. To further understand and analyze 

the effect of adding the excitation to the adjoint circuit, let 𝝍𝒄 

represent the vector of adjoint excitation sources. We can then 

reformulate the expression from (44) as: 

𝒥𝑋
𝑇𝝀 = 𝝍𝒄 (46) 

Next, by comparing the generalized adjoint circuit equations 

from (46) with the dual problem form the optimality KKT 

conditions given in (33), we recognize that the vector of adjoint 

excitation sources correspond to the negative gradient of the 

optimization problem, in addition to the contributions of the 

dual variables related to the inequality constraints. Therefore, 

from the circuit perspective, the negative gradient of the 

objective function and the dual variables related to inequality 

constraints represent the adjoint sources that set the operating 

point of the adjoint circuit in a manner that ensures controlled 

and optimized primal circuit operating point. For instance, 

consider again the n-node RLC circuit from Fig. 2. Its adjoint 

circuit corresponds to the conjugated RLC network and shorted 

voltage sources (OFF). However, it can be shown that turning 

the adjoint excitation voltage sources ON ensures that the 

current supplied by the primal voltage sources is minimized, 

thereby corresponding to adding the objective function of 

minimizing the voltage source current to the optimization 

problem constrained by the RLC circuit equations from Fig. 2. 

TABLE I. MAPPING OF CIRCUIT ELEMENTS TO DUAL DOMAIN 

Primal circuit - 𝓢  Adjoint circuit - �̃� 

Capacitor ↔ Inductor 

Conductance → Conductance 

Constant Real Power Load →  Constant Real Power Load 

Constant Reactive Power 

Element (Inductive) 
↔ 

Constant Reactive Power 

Element (Capacitive) 

Independent current source → open 

Independent voltage source → short 

Objective function gradient → Adjoint input source 

With the relationship between the primal and dual problems 

from (33)-(34) and their equivalent circuit representation 

established, the set of complementary slackness conditions 

from (35) remain to be considered. Therefore, we introduce the 

optimization control circuits, whose governing equations are 

defined by the complementary slackness conditions, which as 

discussed above, further set the values of the adjoint (dual) 

variables representing the portion of adjoint excitation sources. 

Any equivalent circuit variable, including the real and 

reactive powers, as well as the voltage magnitude and 

congestion constraints given by (4)-(5), (15) and (19) can be 

represented by the box inequality constraints. Hence, to obtain 

the generalized optimization control circuit representation, we 

perturb and reformulate the complementary slackness 

conditions (35), which can be written in terms of “diode-like” 

nonlinearities for 𝑢𝑡ℎ and 𝑙𝑡ℎ upper and lower bounds  (𝑋𝑢, 𝑋𝑙): 

𝜇
𝑢
=

𝜀

𝑋𝑢 − 𝑋𝑜 + 𝜇𝑠𝑎𝑡,𝑢
    ∀𝑢 ∈ [1, |𝐼𝑜|], ∀𝑜 ∈ [1, |𝑿|] (47) 

𝜇𝑙 =
𝜀

𝑋𝑜 − 𝑋𝑙 + 𝜇𝑠𝑎𝑡,𝑙
     ∀𝑙 ∈ [1, |𝐼𝑜|], ∀𝑜 ∈ [1, |𝑿|] (48) 

where 𝜇𝑢 and 𝜇𝑙 represent the 𝑢𝑡ℎ and 𝑙𝑡ℎ dual variables related 

to the respective upper and lower limits, |𝐼𝑜| and |𝐼𝑜| are the 

total number of upper and lower bounds, while 𝜇𝑠𝑎𝑡,𝑢 and 𝜇𝑠𝑎𝑡,𝑙 

represent the upper and lower adjoint saturation currents. 
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Importantly, since the range 𝜇
𝑢

 and 𝜇𝑙 values can be now 

determined from the problem’s nature and physical 

characteristics, the addition of saturation currents (𝜇𝑠𝑎𝑡,𝑢 and 

𝜇𝑠𝑎𝑡,𝑙) are similar to models for semiconductor diodes in SPICE 

[21]. The model discontinuity at the bound can now be 

eliminated by constraining the adjoint currents to be defined by 

the maximum physically meaningful value when the controlled 

variable reaches the bound. The discussion of choosing the 

values of adjoint saturation currents is further given in Section 

V. Furthermore, beside the complete removal of model 

discontinuities within the feasible space, a common practice in 

SPICE modeling of the steep nonlinearities [20],[21] is to keep 

the exact model only in the physical range, while approximating 

the “non-physical” regions by piecewise-continuous linear 

functions that are usually obtained as a Taylor linearization at 

the boundary point of physical regions. Therefore, the redefined 

piecewise continuous complementary slackness conditions that 

represent the governing equations of optimization control 

circuits (shown in Fig. 3) can be written as: 

    𝜇𝑢
𝑎
=

{
 
 

 
 

𝜀

𝑋𝑢 − 𝑋𝑜 + 𝜇𝑠𝑎𝑡,𝑢
                     if 𝑋𝑜 < 𝑋𝑢

𝜀(𝜇𝑠𝑎𝑡,𝑢 − 𝑋𝑢)

𝜇𝑠𝑎𝑡,𝑢
2 +

𝜀

𝜇𝑠𝑎𝑡,𝑢
2 𝑋𝑜     if 𝑋𝑜 ≥ 𝑋𝑢

 (49) 

    𝜇𝑙
𝑎 =

{
 
 

 
 

𝜀

𝑋𝑜 − 𝑋𝑙 + 𝜇𝑠𝑎𝑡,𝑙
                        if 𝑋𝑜 > 𝑋𝑙

𝜀 (𝜇𝑠𝑎𝑡,𝑙 + 𝑋𝑙)

𝜇𝑠𝑎𝑡,𝑙
2 −

𝜀

𝜇𝑠𝑎𝑡,𝑙
2 𝑋𝑜        if 𝑋𝑜 ≤ 𝑋𝑙

 (50) 

 
Fig. 3. Generalized control optimization circuits. Note that a diode circuit 

symbol only indicates the type of the circuit nonlinearity. 

As can be seen from (49)-(50), the steepness of diode 

nonlinearities and hence the accuracy of CS constraints is 

defined by an 𝜀 constant. The traditional PDIP methods define 

the “homotopy-like” algorithms [19] that provide more stable 

convergence properties with iteratively updating 𝜀 constant 

(barrier parameter) until it approaches a small number at the 

point of convergence. However, beside the increase of iteration 

count during the homotopic stepping toward the original 

problem, the nonlinear constraint optimization problems cannot 

guarantee the problem feasibility on the whole homotopy path 

[19]. On the other side, SPICE has developed the limiting and 

homotopy algorithms [21] that efficiently handle the extremely 

steep nonlinearities (e.g. diodes, transistor switches, etc.) within 

circuits of enormous scale and complexity. Therefore, instead 

of applying the traditional PDIP algorithms to handle the 

steepness of the “diode-like” curves, we keep (49)-(50) steep 

from the beginning of simulation, and modify the SPICE-style 

heuristics [21] to develop the Critical Curvature Region for 

limiting. This is discussed in further detail in Section V.  

Lastly, after we showed that the complete optimization 

problem defined by the equivalent circuit constraints can be 

represented in terms of equivalent circuits and solved as an 

equivalent circuit problem, we define the Equivalent Circuit 

Programming as a new class of optimization problems.  

Definition 1 (Equivalent Circuit Program - ECP). An 

optimization problem whose constraints can be expressed in 

terms of equivalent circuit equations. Therefore, the problem 

optimality conditions represent the governing equations of an 

equivalent circuit, whose operating point can be obtained by 

solving a circuit simulation problem. Most importantly, if 

sufficient conditions are met, the ECP operating point exactly 

represent an optimal solution of the optimization problem. 

1. Generic framework for optimizing power grid 

An equivalent split-circuit formulation was demonstrated to 

provide a generalized power system simulation framework 

[15]-[17], [23]-[27] that can include any physics-based model, 

such as induction motors [24] or power electronics [23]. Since 

both transmission and distribution networks can be represented 

by an equivalent circuit, they can be simulated (jointly [26] or 

separately [25]) within the same framework. Furthermore, the 

circuit simulation modeling methodology used in modeling the 

steeply nonlinear devices, such as transistor switches, can be 

adapted [27] to develop the continuous models of nonlinear 

power grid device characteristics. This includes PV/PQ 

conversion of the generators and shunts, as well as the 

transformer tap control [27]. Most importantly, the globally 

convergent heuristics that are relied upon in SPICE can be 

adapted to ensure the robust convergence properties of the 

developed nonlinear models [21],[27].  

Lastly, since each of the split-circuit models are further 

defined within the adjoint domain, the proposed framework for 

modeling and solving the optimal power flow problem can be 

generalized to incorporate any physics-based models. For the 

AC-OPF problem specifically, we derive the ECP model of a 

generator that contains the embedded objective function 

gradient within the model. This further ensures the minimized 

generated real power solution. 

2. AC-OPF circuit model of a generator 

The complex governing equations of a generator model and 

the respective real and reactive power constraints are given in 

(10) and (15)-(16) . The powerflow circuit for the generator in 

terms of admittance state variables is derived by splitting (10) 

into its real and imaginary currents 𝐼𝐺𝑅,𝑔 and 𝐼𝐺𝐼,𝑔: 

𝐼𝐺𝑅,𝑔 = 𝐺𝐺,𝑔𝑉𝑅,𝛤 − 𝐵𝐺,𝑔𝑉𝐼,𝛤  ∀𝑔 ∈ 𝒢 (51) 

𝐼𝐺𝐼,𝑔 = 𝐺𝐺,𝑔𝑉𝐼,𝛤 + 𝐵𝐺,𝑔𝑉𝑅,𝛤 ∀𝑔 ∈ 𝒢 (52) 

Moreover, the real and reactive power constraints are 

represented by the two additional equivalent circuits as in Fig. 

4, where the powers are proportional to the currents flowing 

through the voltage source set by the bus voltage magnitude. 

 
Fig. 4. Powerflow equivalent circuit of a generator. 

We start the derivation of adjoint power flow circuit by 

finding the first order sensitivity 𝒥𝑔(𝑿) matrix of the GB 

generator governing equations that satisfies (42): 
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𝒥𝑔(𝑿) =

[
 
 
 
 
𝐺𝐺,𝑔 −𝐵𝐺,𝑔 𝑉𝑅,𝛤 −𝑉𝐼,𝛤 0 0 0

𝐵𝐺,𝑔 𝐺𝐺,𝑔 𝑉𝐼,𝛤 𝑉𝑅,𝛤 0 0 0

0 0 𝑑𝑠𝑞,𝛤 0 1 0 𝐺𝐺,𝑔
0 0 0 −𝑑𝑠𝑞,𝛤 0 1 −𝐵𝐺,𝑔]

 
 
 
 

  (53) 

To further set the operating point of the adjoint power flow 

circuit that ensures that the real power supplied by the generator 

is minimized as well as bounded by the power control circuits, 

the governing equations of generator adjoint circuit can be 

written from established relationships in (33) and (46) as: 

𝒥𝑔(𝑿)
𝑇

[
 
 
 
 
𝜆𝑅,𝛤
𝜆𝐼,𝛤
𝜆𝑃,𝑔
𝜆𝑄,𝑔]

 
 
 
 

+

[
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 −1 0 0
0 0 1 −1
0 0 0 0 ]

 
 
 
 
 

[
 
 
 
�̅�𝑃,𝑔
𝜇𝑃,𝑔

�̅�𝑄,𝑔
𝜇𝑄,𝑔]

 
 
 

= −
𝜕ℱ𝑐
𝜕𝑿

 (54) 

where 𝜆𝑅,𝛤 and 𝜆𝐼,𝛤 represent the adjoint voltages, �̅�𝑃,𝑔, 

𝜇𝑃,𝑔, �̅�𝑄,𝑔 and 𝜇𝑄,𝑔 are the dual variables related to upper and 

lower bounds of real and reactive powers respectively, while 

𝜆𝑃,𝑔 and 𝜆𝑄,𝑔 are the LMPs related to real and reactive powers. 

The first two equations from  (54) represent the main adjoint 

split-circuit governing equations of a generator. By letting the 

real and imaginary adjoint currents (ℑ𝐺𝑅,𝑔 and ℑ𝐺𝐼,𝑔) be a 

function of currents at the generator output terminal, we further 

write the nonlinear adjoint split-circuit currents of a generator: 

ℑ𝐺𝑅,𝑔 = 𝐺𝐺,𝑔𝜆𝑅,𝛤 + 𝐵𝐺,𝑔𝜆𝐼,𝛤  ∀𝑔 ∈ 𝒢 (55) 

ℑ𝐺𝐼,𝑔 = 𝐺𝐺,𝑔𝜆𝐼,𝛤 − 𝐵𝐺,𝑔𝜆𝑅,𝛤  ∀𝑔 ∈ 𝒢 (56) 

Note that the currents from (55)-(56) define the adjoint 

admittance of the generator GB model, as shown by Table I. 

Most importantly, the use of power flow and adjoint generator 

currents is the typical practice in equivalent circuit modeling. 

The respective currents are not the variables of the formulation, 

but rather an aggregation of the rest of the system, for which 

governing equations are built by hierarchically combining the 

respective circuit models of the simulation problem.  

The next four equations from (54) are given as: 

𝑉𝑅,𝛤𝜆𝑅,𝛤 + 𝑉𝐼,𝛤𝜆𝐼,𝛤 + 𝑑𝑠𝑞,𝛤𝜆𝑃,𝑔 = 0 ∀𝑔 ∈ 𝒢 (57) 

𝑉𝑅,𝛤𝜆𝐼,𝛤 − 𝑉𝐼,𝛤𝜆𝑅,𝛤 − 𝑑𝑠𝑞,𝛤𝜆𝑄,𝑔 = 0 ∀𝑔 ∈ 𝒢 (58) 

𝜆𝑃,𝑔 = 𝜇𝑃,𝑔 − 𝑏𝑔 − 2𝑐𝑔𝑃𝐺,𝑔 − �̅�𝑃,𝑔 ∀𝑔 ∈ 𝒢 (59) 

                  𝜆𝑄,𝑔 = 𝜇𝑄,𝑔 − �̅�𝑄,𝑔 ∀𝑔 ∈ 𝒢 (60) 

To further reduce the variable count of the AC-OPF circuit, we 

can eliminate the Lagrange multipliers related to the real and 

reactive powers (𝜆𝑃,𝑔 and 𝜆𝑄,𝑔) by substituting (59)-(60) into 

(57)-(58) respectively. This which further yields the constraints 

added to ensure the optimality and control of the powers 

supplied by the conductance and susceptance state variables, 

governing the G-circuit and B-circuit from Fig. 5. The nonlinear 

adjoint powerflow circuit of a generator that maps (55)-(56) and 

(57)-(60) is shown in Fig. 5. 

It is important to note that the derived governing circuit 

equations precisely represent the part of KKT conditions 

contributed to the generator modeling constraints. Hence, to 

solve the nonlinear circuit simulation problem, each of the 

nonlinear primal and adjoint circuit equations are linearized by 

means of the first order Taylor expansion [15]-[17] to obtain the 

linearized ECP circuit models that are then combined together 

to build to complete ECP representation of AC-OPF problem. 

 
Fig. 5. Adjoint powerflow circuit of a generator that supplies optimal real 

power, enforced by embedded to objective function gradient to G-Circuit. 

3. Building and solving an Equivalent Circuit Program  

The complete ECP circuit representation is obtained by 

hierarchically combining (connecting) the primal, adjoint and 

control circuit models, as defined by the grid (network) 

topology. It is important to note that the hierarchical building of 

the circuit representation corresponds to a modular construction 

of the Jacobian/Hessian matrix and constant vector that defines 

the Newton Raphson values during the iteration process.  

Once the complete equivalent split-circuit is built, its set of 

governing circuit equations correspond to the nonlinear set of 

KKT optimality conditions as linearized by a first order Taylor 

expansion. This linearization represents that step for the inner 

most loop of the Newton Raphson method. Since iteratively 

solving the circuit simulation problem corresponds to Newton 

Raphson iterations, at every iteration only circuit elements 

(Jacobian/Hessian terms) that are dependent on the values from 

the previous iteration are rebuilt, while the linear parts are built 

once at the beginning of the simulation. This approach was 

shown to represent an extremely efficient formulation and 

solution method for solving nonlinear circuit problems [18], 

[21]. The main difference between the circuit simulation and 

traditional methods, however, is the circuit formalism obtained 

from the circuit representation of the problem. This provides 

important information that allows for developing efficient 

heuristics to ensure the robust convergence properties and 

scalability directly from the physical characteristics of the 

problem, as further discussed in the following section. 

V. ENHANCED SIMULATION OF CIRCUIT-BASED AC-OPF 

PROBLEM EQUIVALENT (ESCAPE) APPROACH 

Solving the nonlinear constrained optimization (NCO) 

problem can be a very challenging task that is prone to 

divergence or very slow convergence. These challenges can 

arise due to the inefficient handling of nonlinear constraints 

combined with modeling of inequality constraints. One of the 

widely used methods for solving the NCO problems, Primal 

Dual Interior Point (PDIP) method [19], tackles those 

challenges by multiplying the entire solution vector with the 

smallest damping factor needed to maintain the iteration as 

feasible and further decrease the error. However, since the first 

introduction of the SPICE-like simulators [20], it has been 

shown that damping the complete solution vector of a nonlinear 

simulation has two serious drawbacks [20]. First, if the iterative 

solutions are in vicinity of the correct solution, the convergence 

process is unnecessarily slowed down. Second, if the solutions 

of two consecutive iterations differ widely, the problem may 

diverge or oscillate. Importantly, from the perspective of 

optimization problem, the unnecessary damping of certain 
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variables from a complete solution vector can force the iteration 

process to remain stuck in the local area, hence increases the 

chances of converging to a local solution or a saddle point. 

Therefore, instead of applying the traditional PDIP algorithms 

to solve the AC-OPF circuit, we use the idea of modeling the 

complementary slackness conditions as in PDIP and combine it 

with a circuit simulation solution approach to the problem to 

derive a new simulation technique.  

Herein, we introduce our Enhanced Simulation of Circuit-

based AC-OPF Problem Equivalent (ESCAPE) approach as an 

adaptation of limiting heuristics from circuit simulations. 

A limiting technique can be generalized as follows: for a 

given maximum step size vector Δ𝚼max, we can find the vector 

of damping factors (𝜹𝑪) that limits the NR variable update as: 

𝜹𝑪 = min{𝒆, [sign(Δ𝚼)⊙ Δ𝚼max ] ⊘ Δ𝚼} (61) 

𝜰𝑘+1 = 𝜰𝑘 + 𝜹𝑪⊙Δ𝚼 (62) 

where ⊘ represent the pointwise division, 𝒆 is a vector of ones, 

and 𝜰 is a placeholder vector of limited variables. Note from 

(61) that in contrast to the traditional damping approaches, each 

of the variables herein can have its own limiting factor. 

A. Voltage Limiting 

Voltage Limiting was shown be a simple and effective 

simulation technique that limits the value of the step change that 

the real and imaginary voltage vectors are allowed to make 

during each NR iteration in powerflow problem [16]-[17]. For 

the AC-OPF circuit, the voltage limiting is done in two stages. 

In the first one, we limit the powerflow real and imaginary 

voltage steps, i.e. 𝜰 ∈ {𝑽𝑹, 𝑽𝑰} as in (61) and use the obtained 

damping vectors to limit the real and imaginary adjoint voltages 

respectively. To further ensure that the step sizes of adjoint 

voltages do not exceed the predefined limits, the second stage 

applies limiting technique to adjoint voltages. 

B. Admittance Limiting 

As discussed in [16], the voltages of powerflow equivalent 

circuit are very sensitive to the reactive power change during 

nonlinear iteration. Hence, we redefine the Q limiting [16]-[17] 

to limit the NR step change of the admittance state variables of 

the generator model.  With well-defined bounds on admittance 

state variables from the bounds on real and reactive power and 

voltage magnitude, we establish the maximum step change 

vectors for the generator conductance and susceptance: 

𝛥𝑮𝑚𝑎𝑥 = 𝛼(𝑮𝑚𝑎𝑥 − 𝑮𝑚𝑖𝑛) (63) 

𝛥𝑩𝑚𝑎𝑥 = 𝛼(𝑩𝑚𝑎𝑥 −𝑩𝑚𝑖𝑛) (64) 

where 𝛼 ∈ (0,1] represent the discretizing factor. 

C. Critical Curvature Region (CCR) Limiting 

In contrast to the feasible range of the power flow split-

circuit variables that are normalized and well defined by the 

bounds of the optimization problem, the set of adjoint variables, 

particularly the ones related to problem bounds, may not be well 

bounded in general. However, as shown in Section III, the 

gradient of the objective function represents an excitation 

source of the adjoint circuit, and thereby determines its 

operating point. Therefore, in order to prevent the large 

variations of dual variables, the first step in obtaining the 

efficient limiting heuristics is normalizing the adjoint circuit.  

    1)  Normalizing the adjoint circuit 

Consider a quadratic cost function from (1) that is defined by 

the set of cost function coefficients {𝒂, 𝒃, 𝒄}. Herein, we 

introduce the adjoint per unit normalization (a.p.u.) of the 

adjoint excitation sources; i.e. gradient of the objective function 

(Section III.). Importantly, since scaling of the cost function by 

a positive constant doesn’t affect its minima, we obtain the 

base-factor that normalizes the objective function as: 

𝑏𝑎𝑝𝑢 = max[max(𝒃, 2𝒄)] (65) 

The normalized objective function now sets the adjoint circuit 

operating point in the range of around 1 a.p.u. Therefore, the 

values of dual variables set by the upper and lower bound 

complementary slackness constraints correspond to the per unit 

amount of injected adjoint current needed to control the 

respective primal variables. Hence, choosing the value of 

saturation adjoint currents from (49)-(50) that yield the 40 a.p.u. 

dual currents at the boundary is sufficient as the upper bound 

on physical region of dual variables.  

    2)  Critical curvature regions 

The Critical Curvature regions (CCR) can be defined based 

on the maximum curvature points of complementary slackness 

functions (49)-(50) as shown in Fig. 6. Hence, instead of 

damping the primal and dual variables of the complementary 

slackness conditions over their entire domain, the diode 

heuristics [20]-[21] are adapted to limit the NR step sizes only 

if the current iterates are within the defined CCRs and exceed 

the predefined threshold step. 

 
Fig. 6. Defining the Critical Curvature regions. 

    3)  Adaptation of diode alternating basis technique [21] 

To ensure the efficient convergence properties of the steep 

nonlinearities within CCRs (see Fig. 6), as well as preserve the 

feasibility of the ECP circuit operating point, we modify the 

circuit simulation heuristics used in solving diode circuits 

[18],[20]-[21]. This approach was found to be nearly optimal 

for limiting the diode circuits in SPICE [20]. The alternating 

basis limiting technique is obtained [21] by equating the 

nonlinear function value at (𝑘 + 1)𝑡ℎ iteration with its 

linearized Taylor approximation evaluated using the nonlimited 

NR step, 𝛥𝑋𝑜, as shown in (66)-(67). 

𝜀

𝑋𝑢 − 𝑋𝑜
𝑘+1 + 𝜇

𝑠𝑎𝑡,𝑢

=
𝜀 + 𝜇

𝑢

𝑎,𝑘
𝛥𝑋𝑜

𝑋𝑢 − 𝑋𝑜
𝑘 + 𝜇

𝑠𝑎𝑡,𝑢

  ∀𝑢 ∈ [1, |𝐼𝑜|] (66) 

𝜀

𝑋𝑜
𝑘+1 − 𝑋𝑙 + 𝜇𝑠𝑎𝑡,𝑙

=
𝜀 − 𝜇𝑙

𝑎𝛥𝑋𝑜

𝑋𝑜
𝑘 − 𝑋𝑙 + 𝜇𝑠𝑎𝑡,𝑙

     ∀𝑙 ∈ [1, |𝐼𝑜|] (67) 

After solving for 𝑋𝑜
𝑘+1 we obtain its NR step limiting 

expressions that are applied within the CCR regions: 

𝑋𝑜
𝑘+1 = 𝑋𝑢 + 𝜇𝑠𝑎𝑡,𝑢 −

𝜀

𝜀 + 𝜇𝑢
𝑎,𝑘
𝛥𝑋𝑜

(𝑋𝑢 + 𝜇𝑠𝑎𝑡,𝑢 − 𝑋𝑜
𝑘) (68) 

𝑋𝑜
𝑘+1 = 𝑋

𝑙
− 𝜇

𝑠𝑎𝑡,𝑙
+

𝜀

𝜀 − 𝜇
𝑙

𝑎𝛥𝑋𝑜
(𝑋𝑜

𝑘 − 𝑋
𝑙
+ 𝜇

𝑠𝑎𝑡,𝑙
) (69) 

Finally, to prevent oscillation for small values of 𝜀, we ensure 

that if current step makes the next iterate go from a CCR to 

neutral region or vice versa, we limit it such that it has to stop 

at the maximum curvature point before entering a new region.  
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D. Embedding the homotopy within the ECP circuit 

To allow the robust convergence of any large-scale power 

system optimization problem, we extend the Tx-stepping 

homotopy method [16],[27] to the adjoint domain. The solution 

of the optimal power flow is obtained by embedding the 

homotopy factor 𝜂 ∈ [0,1] to linear series and shunt network 

elements and transformer model, as shown in (70)-(72). The 

system equations are then sequentially solved via the relaxed 

ECP problems while gradually decreasing the homotopy factor 

to zero from one. Namely, for the initial homotopy factor set to 

one, the ECP circuit is virtually “shorted.” Now, the optimal 

power flow solution corresponds to the economic dispatch 

solution and can be trivially obtained under the assumption that 

there is sufficient generation in the system to supply the load. 

Gradually decreasing the embedded homotopy factor 𝜂 to zero 

sequentially relaxes the ECP circuit toward its original state, 

while using the solution from the previous sub-problem to 

initialize the ECP circuit for the next homotopy decrement:  

𝐺𝐿 + 𝑗𝐵𝐿 = (𝜂Υ + 1)(𝐺𝐿 + 𝑗𝐵𝐿) (70) 

𝑡(𝜂) = 𝑡 + (1 − 𝑡)𝜂 (71) 

𝜃𝑝ℎ(𝜂) = (1 − 𝜂)𝜃𝑝ℎ (72) 

where Υ represents an admittance scaling factor, 𝑡 is the 

transformer tap, and 𝜃𝑝ℎ is the phase shifting angle. 

E. Towards a globally convergent AC-OPF algorithm 

Years of research in the circuit simulation field have 

advanced the techniques of Newton Raphson step limiting and 

application of homotopy methods that are shown to exhibit 

global convergence properties [18],[21]. We have shown that 

the same heuristics can be adapted and extended to the power 

system simulation problems, thereby guaranteeing similar 

global convergence properties [17],[26]-[27]. Furthermore, by 

strictly removing the discontinuities of the complementary 

slackness conditions (49)-(50) and with extension of the power 

flow heuristic and homotopy algorithms to the adjoint (dual) 

domain, it can be demonstrated that if a feasible solution does 

exist, the circuit simulation techniques can bound the NR step 

while maintaining the full rank solution matrix throughout the 

simulation [27]. It follows that the same robust convergence 

properties remain within the ECP problems, such as AC-OPF. 

VI. SIMULATION RESULTS  

The circuit element library for the derived models that map 

the AC-OPF problem was built and incorporated in MATLAB 

to implement the ESCAPE algorithm. The tool reads in the 

‘mpc’ input file, translates the parsed information into the 

circuit parameters, hierarchically builds the sparse circuit 

equations by combining the circuit models that correspond to 

building the set of KKT conditions, and then iteratively solves 

them to find the operating point of the AC-OPF circuit. In 

addition to the nonlinear circuit simulator, a linear simulator is 

used to initialize the adjoint split-circuit. All the simulations 

were run on MacBook Pro 2.9 GHz Intel Core i7. 

We demonstrate the robustness of our circuit formulation 

based approach by evaluating the following: 1) IEEE pglib and 

PEGASE test cases libraries; 2) local optimal solutions test 

cases from [5]; 3) GridPack data set library from PNLL; and 4) 

Synthetic Eastern Interconnection test case [29]. The problems 

were initialized using the real power and the voltage angle 

obtained from a DC-OPF solution that includes a flat start for 

voltage magnitudes and reactive powers given by the mean 

values defined by respective limits. Each of the test cases is 

solved for current congested (upper bound on maximum current 

magnitude of transmission line) and nominal operating 

conditions (without congestion constraints). We compare the 

results for our ECP formulation with the ‘PQV’AC-OPF and 

relaxed ‘SDP’ AC-OPF formulations solved with 

‘MIPS’/’FMINCON’ and ‘SDPT3’ toolboxes by using the 

default input solver parameters, (maximum constraint violation 

5E-6, optimality tolerance 1E-4, variable tolerance of 1E-4 p.u. 

and a maximum iteration count of 500 iterations) within the 

MATPOWER solver. The results are summarized in Table II.

TABLE II. AC-OPF SIMULATION RESULTS: COMPARING THE PROPOSED CIRCUIT FORMULATION WITH THE TRADITIONAL ONES 

Cat. Test Case 

AC-OPF Circuit Formulation + ESCAPE MATPOWER AC-OPF with DC-OPF start MATPOWER AC-OPF with input file start 

Nominal Operation Congested Operation Nominal Operation Congested Operation Nominal Operation Congested Operation 

Cost [$/hr] Cost [$/hr] Cost [$/hr] Cost [$/hr] Cost [$/hr] Cost [$/hr] 

2 Case 9mod 3,087.84 3,087.84 3,087.85 ** 4,246.5 (MIPS)/3,087.8 3,087.84 ** 4,246.5 (MIPS)/3,087.8 

1 Case 14 11,230.52 11,230.52 11,230.52 11,230.52 11,230.52 11,230.52 

1 Case 30 10,598.21 11,708.23 10,598.21 11,708.23 10,598.21 11,708.23 

2 Case 39mod2 941.74 941.74 941.74 941.74 ** 941.74 941.74 ** 

2 Case 39mod3 1,888.76 1,894.05 1,888.76 ** 1,894.05 ** 1,888.76 ** 1,894.05 ** 

1 Case 89 5,817.60 5,817.60 5,817.60 5,817.60 5,817.60 5,817.60 

2 Case 118mod 129,625.02 129,625.02 129,625.02 129,625.03 (MIPS)/DIVERGE 129,625.02 129,625.02 

1 Case 300 638,312.01 657,418.35 638,312.01 657,418.35 638,312.01 657,418.35 

2 Case 300mod 378,540.49 378,540.49 378,540.49 (MIPS)/DIVERGE 378,540.49 (MIPS)/DIVERGE 378,540.49 378,540.50 

1 Case 1354 74,060.41 74,064.30 74,060.41 74,064.30 74,060.41 74,064.30 

1 Case 2869 133,980.72 133,993.48 133,980.72 133,993.48 133,980.72 133,993.48 

1 Case 9241 315,886.40 315,902.49 ⋆ 315,888.48 ** 315,903.4 (MIPS)/315,902.8 315,886.40** 315,903.36 

1 Case 13659 386,106.58 ⋆ 386,106.58 ⋆ --- § ---  § --- § ---  § 

3 Case 40605 15,099,595.29 15,395,681.29 ⋆ --- --- 15,099,595.30 ** 15,395,683.29 ** 

3 Case 68251 26,960,544.97 ⋆ 27,551,688.77 ⋆ --- --- 26,960,547.17 ** --- 

4 SyntheticUSA 16,439,446.70 16,439,446.70 16,441,143.10** 16,439,446.70** 16,439,446.70 ** 16,439,446.70 ** 
--- Test case didn’t converge after maximum iteration count (500) is reached with both ‘MIPS’ and ‘FMINCON’  

 ⋆  Lower optimal cost found by ESCAPE. The obtained optimal solution is further validated by using it as an initial start for running the AC-OPF in MATPOWER. 

** ‘MIPS’ MATPOWER solver diverged or didn’t converge after one hour; optimal solution obtained using ‘FMINCON’ toolbox. 

 § Case13659 did not run with both ‘MIPS’ and ‘FMINCON’ solvers in MATPOWER, however, authors in [30] have reported the solution obtained using ‘KNITRO’ given as:  $386,107.5 for both operating conditions

The ESCAPE technique obtained a solution for all of the 

examined test cases during both operating conditions and 

converged to the same optimal solution point for each case 

(Table 2) starting from both DC-OPF and input file initial starts. 

In contrast, the MATPOWER ‘MIPS’ solver failed on several 

of the testcases, notably the larger size systems, and the 

‘FMINCON’ toolbox performed better in those cases, but also 

diverged for the two smaller cases when initialized from DC-
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OPF. For this reason, we present the MATPOWER results as 

initialized from DC-OPF and test case input file separately. 

Lastly, the SDP relaxation performed as reported in the 

literature [5],[12], and it was characterized by slower runtimes 

than the other approaches. Furthermore, the SDP relaxation 

failed to converge for the test cases that are known to have 

multiple local solutions and was able to successfully find the 

global solutions of the 14, 30 and 89 bus test cases that match 

the solutions obtained from ESCAPE and MATPOWER.  
We next analyze the ESCAPE runtime as a function of 

system size and compare it to the other formulations in Fig. 7. 

All cases were run under congested operating conditions for the 

same default parameters. The ‘PQV’ AC-OPF formulation is 

run with both ‘MIPS’ and ‘FMINCON’ solvers, and the better 

of the two run times is reported. As it can be seen from Fig. 7, 

ESCAPE demonstrated better robustness with problem size. 

We believe that this can be attributed, in part, to exploiting the 

“problem physics” to limit only specific variables that can cause 

divergence, just as is done in SPICE [18], [20]-[21]. This is in 

contrast to general purpose optimization solvers, such as PDIP 

methods, that uniformly limit the solver step size, while 

homotopically varying the 𝜀-parameter. Importantly, even 

though the problem size is slightly increased in comparison to 

the traditionally formulated AC-OPF, the physics-based 

heuristics decrease the iteration count, and when combined with 

the sparse circuit methodology of building the circuit equations, 

improve the simulation efficiency. These results, however, do 

not exclude that the other toolboxes may perform better, but 

rather indicate a promising path toward developing a 

generalized and robust framework for solving the power grid 

optimizations solely from the physical characteristics of the 

problem. 

 
Fig. 7. Optimization runtime comparison.  

VII. CONCLUSION  

In this paper we introduced an equivalent circuit formulation 

for modeling and solving the AC-OPF problem. A new 

macromodel of a generator was defined in terms of conductance 

and susceptance state variables. The linear adjoint circuit theory 

was extended to include the nonlinearities at fixed frequency 

and further allow the direct mapping of KKT optimality 

conditions to a circuit simulation problem. The preliminary 

simulation results show that understanding of physics behind 

the ECP circuits helps in achieving stable and efficient 

convergence properties and provides greater probability of 

converging to optimal solution with lower cost function values. 

Most importantly, the framework is scalable to realistic large-

scale power systems and facilitates incorporation of any 

physics-based power grid device models. 
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